Data Report:
 1980 Demersal Trawl Survey
 of the Eastern Bering Sea
 Continental Shelf

NOAA Technical Memorandum NMFS F/NWC-49

Yuko Umeda
and
Richard Bakkala

October 1983

[^0]
THIS PAGE INTENTIONALLY LEFT BLANK

ABSTRACT

Abstract

This data report is one of a planned series to describe results of resource assessment surveys for groundfish in the eastern Bering Sea. The report describes methods used and summarizes results of the 1980 survey, in the form of a series of tables and figures and in data appendices. Summarized in the results section are a list of species taken during the survey, abundance estimates of major taxonomic groups of fish, and rankings of individual species of groundfish in terms of relative abundance, for principal species of groundfish, geographic distributions and size and age composition are illustrated and abundance estimates given. The appendices contain detailed station and catch data and computer listings of abundance estimates and biological characteristics of the sampled populations of principal species of groundfish.

THIS PAGE INTENTIONALLY LEFT BLANK

TABLE OF CONTENTS

Page
Introduction 1
Survey Methods 2
Survey Area 2
Vessels and Fishing Gear 2
Data Collection and Sampling Methods 9
Data Analysis 11
Results 12
Haul and Catch Data 12
Environmental Conditions 12
Species Taken 12
Overall Abundance and Distribution of Major Fish Groups 12
Relative Importance of Individual Species of Fish 28
Abundance, Distribution, and Size and Age Composition of Principal Species of Fish 37
References 84
Appendix A. Station and Catch Data, 1980 Eastern Bering Sea Trawl Survey 87
Appendix B. Rank Order of Relative Abundance for Fish and Invertebrates 119
Appendix C. Population and Biomass Estimates for Principal Species of Fish 130
Appendix D. Population Estimates by Sex and Size Groups for Principal Species of Fish 141
Appendix E. Age-Length Keys for Principal Species of Fish 157
Appendix F. Estimated Age Composition for Principal Species of Fish 167

INTRODUCTION

Abstract

The Resource Assessment and Conservation Engineering (RACE) Division of the Northwest and Alaska Fisheries Center (NWAFC) has conducted annual resource assessment surveys for crab and groundfish in the eastern Bering Sea since 1971. Earlier investigations (1971-74) were limited to the southeast Bering Sea, and it was not until 1975 that a major portion of the eastern Bering Sea continental shelf was sampled in a comprehensive multivessel survey. The 1975 survey served as a baseline trawl survey (Pereyra et al. 1976) and has remained a standard in design and comparison for subsequent Bering Sea surveys.

A larger more intensive investigation than the 1975 baseline study was conducted in the eastern Bering Sea in 1979. The 1979 survey was conducted with the cooperation of the Far Seas Fisheries Research Laboratory of the Fisheries Agency of Japan, Shimizu, and was the first in a series of major comprehensive surveys planned by RACE on a triennial basis. Surveys of lesser intensity are planned for intervening years; the 1980 survey constituted one of these smaller scale efforts.

From May-July 1980, two vessels were used to assess, with demersal trawls, the relative abundance and biological condition of demersal fish and invertebrates on the eastern Bering Sea continental shelf. This report presents abundance and biological information on major groundfish obtained from the survey. It consists of three main sections which describe (1) the methods used during the survey, (2) the abundance and distribution of major groups of groundfish and invertebrates, and (3) the abundance, distribution and biological characteristics of principal individual species of groundfish. In addition, the appendices present basic station and catch data and computer listings of the analyses of survey data.

Results for principal species of invertebrates are presented in reports issued by the Kodiak, Alaska, facility of the NWAFC.

SURVEY METHODS

Survey Area

The 1980 survey area and station pattern are illustrated in Figure 1. Sampling was restricted to continental shelf waters (<200 m in depth). The survey area and its subdivisions generally follow those established for the 1975 Bering Sea survey (Pereyra et al. 1976), although in 1980, an additional subarea (5) was delineated to incorporate sampling around St. Matthew Island.

Geographical sizes of subareas and sampling effort by subarea are given in Table 1. Sampling effort was relatively uniform across all subareas (one station per grid) except in subarea 3 South (3S) around the Pribilof Islands, where sampling was intensified to provide increased coverage of the blue king crab stock of those waters. To avoid bias of abundance estimates from the nonuniform sampling density in that area, subarea $3 S$ was divided into two subdivisions for the analyses of data (Fig. 1).

Vessels and Fishing Gear

The NOAA ship Oregon and the chartered vessel Ocean Harvester participated in the survey; vessel characteristics are given in Table 2. Both vessels fished the 400 -mesh eastern trawl; gear dimensions are listed in Table 3. The 400 -mesh eastern trawl has a mean vertical opening of 1.5 meters (5 ft) and a path width of $12.2 \mathrm{~m}(40 \mathrm{ft})$ while fishing.

Relative fishing powers of the two vessels were examined in a comparative trawling experiment with vessels fishing alternate rows of stations in part

Figure 1. --Sampling stations and survey subareas used in the analysis of the 1980 survey data. Subarea 3 S was divided into two strata (shown by dashed lines) because of differences in sampling densities; data from these strata were analyzed independently and then combined for the total subarea. The comparative fishing area for the two vessels is outlined in subareas 1, 2, and 4S.

Table 1.--Size of subareas used during the 1980 demersal trawl survey and planned and actual sampling densities by subarea (Fig. 1).

Subarea	$\frac{\text { Area }}{k_{m}^{2}}$	Proportion of total area	Planned sampling density		Actual sampling density	
			No. stns.	km/sta.	No. stns.	km/sta.
1	83,366	0.178	59	1,413	58	1,437
2	60,964	0.130	44	1,386	41	1,487
3N	55,631	0.119	35	1,589	32	1,738
$3 \mathrm{~S}^{\text {a/ }}$	78,739	0.168	54	1,458	64	1,230
4N	91,913	0.197	55	1,671	67	1,372
4S	$\therefore .81,540$	0.174	45	1,812	57	1,431
5	15,371	0.033	11	1,397	10	1,537
Total survey						
area	467,524	1.000	303	1,5,43	329	1,421

[^1]Table 2.--Vessels participating in the 1980 demersal trawl survey.

Vessel	Overall length (m)	Gross tonnage	Horsepower	Survey period Start Finish
Oregon	30.4	219	$\therefore 600$	5 May
Ocean Harvester	32.9	199	1,125	9 May July

Table 3.--Demersal trawls used during the 1980 survey.

			Mesh sizes				Accessory gear	
Trawl	Headrope length (m)	Footrope length (m)	Wing and body (mm)	$\begin{aligned} & \text { Inter- } \\ & \text { mediate } \\ & \text { (mm) } \end{aligned}$	$\begin{aligned} & \text { Codend } \\ & (\mathrm{mm}) \end{aligned}$	Cod end liner (mm)	Door width length (m)	$\begin{gathered} \text { Dandyline } \\ \text { length } \\ \text { (m) } \end{gathered}$
$\begin{aligned} & 400-m e s h \\ & \text { eastern } \end{aligned}$	21.6	28.7	102	89	89	32	1.5×2.1	45.5

of the survey area (Fig. 1). Seventy hauls (35 hauls/vessel) were used to compare relative fishing powers.

A method described by Geisser and Eddy (1979) has been used to decide whether the catch per unit effort (CPUE) of a given species in a common area fished by two vessels came from the same or different populations. Vessels were considered to have equal fishing powers for a particular species if that species was determined to be from the same population. If the CPUE values for that species were determined to come from distinct populations, the estimates from the more efficient vessel were considered to be the most representative of actual population abundance. Catch rates of the least efficient vessel were then adjusted to the most efficient vessel by applying the ratio of the mean catch rates (less efficient vessel/more efficient vessel) derived from the comparative fishing experiment.

Table 4 lists mean CPUE values for major fish species and species groups for each vessel from the comparative fishing area. Geisser and Eddy (1979) procedures indicate that the vessels sampled distinct populations of yellowfin sole, Alaska plaice, Greenland turbot, and eelpouts. The Oregon was more efficient in catching those species; therefore, fishing power adjustments to the catches of the Ocean Harvester were indicated.

Biomass estimates adjusted for differences in fishing powers for eelpouts and the three species of flatfish are shown in Table 5. Also shown are unadjusted biomass estimates from the 1980 survey data and estimates from a comparable area sampled in 1979. These data illustrate that the application of the 1980 fishing power coefficients increased biomass estimates for these taxa approximately two to three times the estimates from unadjusted 1980 data. Increases in abundance of this magnitude are unreasonable and

Table 4 .--Comparison of relative fishing powers of the chartered vessel Ocean Harvester and the NOAA ship Oregon in the comparative tow area.

Species	Mean catch rates (kg/ha)		Ratio of catch rates
	$\frac{\text { Ocean }}{\text { Harvester }}$	Oregon	Ocean
	\cdots		
Walleye pollock	9.04	8.61	1.11
Pacific cod	9.02	11.00	0.84
Sablefish	0.62	0.11	0.61
Pacific ocean perch	-	-	-
Pacific herring	0.24	0.03	7.48
Yellowfin sole	47.13	84.71	0.56 b/
Rock sole	3.92	5.74	0.70
Flathead sole	2.04	2.93	0.76
Alaska plaice	6.47	15.19	$0.41 \mathrm{~b} /$
Greenland turbot	0.12	0.29	0.45 b/
Arrowtooth flounder	0.82	0.62	1.49
Pacific halibut	1.17	1.26	0.96
Other flounders	1.71	1.93	0.82
Smelts	0.19	0.31	0.59
Sculpins	0.62	1.02	0.56
Snailfishes	0.01	0.04	0.25
Poachers	0.11	0.15	0.67
Eelpouts	0.90	2.87	$0.32^{\text {b }}$
Skates	1.80	3.46	0.52
Other fish	<0.01	<0.01	0.54

a/ 35 stations were trawled by each vessel in the comparative fishing area between $162^{\circ} \mathrm{W}$ and $167^{\circ} \mathrm{W}$ (Fig. 1).
b/ Geisser and Eddy (1979) procedure indicates that the two vessels sampled distinct populations.

Table 5.--Comparisons of mean biomass estimates for yellowfin sole, Alaska plaice, Greenland turbot, and eelpouts for subareas $1-4$, derived from 1980 survey data (adjusted and unadjusted for differences in fishing powers between survey vessels) and from 1979 survey data.

Species	1979	Mean biomass estimates metric tons (t)	
		1980	
		Unadjusted	Adjusted
Yellowfin sole	1,907,685	1,911,200	2,994,233
Alaska plaice	283,000	343,600	693,430
Greenland turbot	143,300	168,600	364,607
Eelpouts	360,800	345,700	921,532

biologically untenable, especially for long-lived species such as the flatfish. Fishing powers from the 1980 comparative fishing experiments were therefore considered unreliable and were not used in the analyses of the survey data.

Reasons for the poor results are unknown, although an important contributing factor may have involved vessel logistics. The vessels fished the comparative area approximately 10 days apart which may have been sufficient time to allow shifts in populations and, consequently, sampling of different concentrations by the two vessels.

Data Collection and Sampling Methods
Sampling procedures used during the 1980 survey are described in detail by Wakabayashi et al. (1983). Tow duration was 30 min at each station. Catches weighing less than approximately $2,500 \mathrm{lb}(1,150 \mathrm{~kg})$ were processed completely, while those larger than 2,500 lb were subsampled according to methods described by Hughes (1976). Total catches or the subsampled portion were sorted and identified to species, and the catches of each species weighed and counted. Weights and numbers of individuals from a subsampled catch were expanded to the total catch.

Biological information was obtained from commercially important species: length measurements ${ }^{1}$ were taken from random samples of fish and stratified samples of age structures collected. Scales were taken from Pacific cod and otoliths from all other species; all age structures were stratified by sex and size-class. Table 6 lists the numbers of fish measured and age structures collected during the survey.

[^2]Table 6.--Numbers of fish measured and age structures collected during the
1980 demersal trawl survey in the eastern Bering Sea.

Species	Number measured	Number of age structures collected
Yellowfin sole	36,641	836
Walleye pollock	33,318	1,859
Pacific cod	12.266	1,233
Flathead sole	9,142	450
Rock sole	7,500	376
Alaska plaice	5,756	-
Greenland turbot	5,314	393
Arrowtooth flounder	2,464	459
Pacific halibut	996	-
Longhead dab	956	-
Saffron cod	590	-
Sablefish	204	-
Arctic cod	3	-
Total	115.150	5,606

Data Analysis

A detailed description of the methods of analysis of the demersal trawl data are given by Wakabayashi et al. (1983). In general terms, catches at each station were standardized to basic sampling unit (kilogram/hectare (kg/ha) trawled). Mean CPUE values by species and strata were then computed from the standardized catch rates and summed over strata after being weighted by the size of each strata to obtain mean catch rates for the overall survey area. Standing stock (biomass) estimates were derived using the "area swept" method of Alverson and Pereyra (1969).

In estimating the length composition of the sampled populations, the number of individuals within sex and size-classes for each station were derived by expanding the length-frequency subsample to the total catch per standard sampling unit. The individual station data were then expanded to the total strata and summed over strata to obtain estimates for the total survey area. Age composition was estimated by proportioning the computed population distribution to ages using age-length keys that were stratified by sex and size categories.

Subsequent to the 1979 survey, it was discovered that aging methods for Pacific cod based on counting annuli from scales were unreliable (Bakkala 1981). Better results were produced by a computer program (MacDonald and Pitcher 1979) which uses an iterative procedure to fit normal curves to the modes in a length-frequency distribution. Prior estimates of length-at-age (such as from a von Bertalanffy curve) are used as starting points for the program. This program was, therefore, used for estimating the age composition for cod rather than the age readings from scales.

RESULTS

Haul and Catch Data

Appendix A lists station and catch data for the NOAA ship Oregon and the chartered vessel Ocean Harvester. Station data include haul number, date, location, tow-depth, tow duration, and distance fished. Catch data list the weights in kilograms of fish and invertebrates taken at each station.

Environmental Conditions

Surface and bottom water temperature contours are shown in Figures 2 and 3. Bottom temperatures ranged from $-0.9^{\circ} \mathrm{C}$ to $10.8^{\circ} \mathrm{C}$ and surface temperatures from $0.3^{\circ} \mathrm{C}$ to $11.2^{\circ} \mathrm{C}$. Figure 4 compares annual mean bottom temperatures in the southeastern Bering Sea from 1963 to 1983. These data illustrate the annual variability of summer temperature conditions that are characteristic of near bottom waters on the eastern Bering Sea shift and demonstrate that the summer of 1980 was relatively warm.

Species Taken

Table 7 lists all species of fish taken during the survey. Nineteen families were represented, from which 93 fish were identified to species.

Overall Abundance of Major Fish and Invertebrate Groups and Distribution of Fish Groups

Table 8 summarizes estimated abundances of major fish and invertebrate groups in the survey area; Figures 5-11 illustrate the distribution of total fish and major fish groups (cods, flounders, sculpins, eelpouts, poachers, and skates) during May-July 1980. A biomass of 8.72 million metric tons (t) was estimated

Figure 2.--Distribution of surface water temperatures observed during the 1.980 survey.

Figure 3.--Distribution of bottom water temperatures observed during the 1980 survey.

Figure 4.--Mean bottom temperatures in the southeastern Bering Sea (1973-83) based on data from Japanese trawl fisheries (Coachman and Charnell 1979) and from U.S. research vessel data (data on file at Northwest and Alaska Fisheries Center, Seattle, WA 98112).

Family and Speciesa/	Common name ${ }^{\text {a/ }}$
Squalidae Squalus acanthias	Spiny dogfish
Rajidae Raja sp. Raja aleutica Raja binoculata Raja parmifera Raja stellulata	Skate unidentified Aleutian skate Big skate Alaska skate Starry skate
Clupeidae Clupea harengus pallasi	Pacific herring
Osmeridae Osmeridae sp. Osmerus mordax Mallotus villosus Thaleichthys pacificus	Smelt unidentified Rainbow smelt Capelin Eulachon
Gadidae Boreogadus saida Eleginus gracilis Gadus macrocephalus Theragra chalcogramma	Arctic cod Saffron cod Pacific cod Walleye pollock
	Eelpout unidentified Shortfin eelpout Eelpout unidentified Wattled eelpout Sparse toothed lycod Polar eelpout
Scorpaenidae Sebastes $\frac{\text { aleutianus }}{\text { Sebastes }} \frac{\text { alutus }}{\text { Sorealis }}$ $\frac{\text { Sebastes }}{\text { Sebastes }} \frac{\text { crameri }}{\text { Sebastes }}$	Rougheye rockfish Pacific ocean perch Shortraker rockfish Darkblotched rockfish Northern rockfish

Table 7 .--Continued.

Family and species

Common name

Hexagrammidae

Hexagrammos sp.
Hexagrammos decagrammus
Hexagrammos lagocephalus
Hexagrammos stelleri
Pleurogrammus monopterygius

Anoplopomatidae
Anoplopoma fimbria

Cottidae
Cottidae sp.
Artediellus sp.
Artediellus uncinatus
Blepsias bilobus
Dasycottus setiger
Enophrys sp.
Gymnocanthus sp.
Gymnocanthus galeatus
Gymnocanthus pistilligerb/
Gymnocanthus tricuspis
Hemilepidotus sp.
Hemilepidotus hemilepidotus
Hemilepidotus jordani
Hemilepidotus spinosus
Hemilepidotus zapus
Hemitripterus bolini
Icelus sp.
Icelus spatula
Icelus spiniger
Leptocottus armatus
Malacocottus kincaidi
Melletes papilio
Microcottus sellaris
Myoxocephalus sp.
Myoxocephalus jaok
Myoxocephalus polyacanthocephalus
Myoxocephalus scorpius
Myoxocephalus verrucosus $b /$
Radulinus asprellus
Triglops s p.
Triglops forficata
Triglops pingeli

Greenling unident.
Kelp greenling
Rock greenling
Whitespotted greenling
Atka mackerel

Sablefish

Sculpin unidentified
Sculpin unidentified
Arctic hookear sculpin
Crested sculpin
Spinyhead sculpin
Sculpin unidentified
Sculpin unidentified
Armorhead sculpin
Threaded sculpin
Arctic staghorn sculpin
Irish lord unidentified
Red Irish lord
Yellow Irish lord
Brown Irish lord
Longfin Irish lord
Bigmouth sculpin
Sculpin unidentified Spatulate sculpin
Thorny sculpin
Pacific staghorn sculpin
Blackfin sculpin
Butterfly sculpin
Brightbelly sculpin
Sculpin unidentified
Plain sculpin
Great sculpin
Shorthorn sculpin
Warty sculpin
Slim sculpin
Sculpin unidentified
Scissortail sculpin
Ribbed sculpin

Table 7 .--Continued.

Family and
species Common name

Agonidae
Agonidae sp.
Agonus acipenserinus
Anoplagonus inermis
Aspidophoroides bartoni
Aspidophoroides olriki
Bathyagonus infraspinatus
Bathyagonus nigripinnis
Occella dodecaedron
Occella verrucosa
Pallasina barbata
Percis japonicus ${ }^{\text {/ }}$
Sarritor frenatus
Sarritor leptorhynchus
Cyclopteridae
Cyclopteridae sp.
Aptocyclus ventricosus
Careproctus melanurus,
Careproctus rastrinus ${ }^{\text {d }}$
Eumicrotremus orbis
Liparis sp.
Liparis dennyi
Liparis pulchellus

Trichodontidae
Trichodon trichodon

Bathymasteridae
Bathymaster signatus

Anarhichadidae
Anarhichas orientalis
Searcher

Stichaeidae

Stichaeidae sp.
Chirolophis decoratus
Lumpenella longirostris
Lumpenus mackayi
Acantholumpenus maculatus b/
Lumpenus sagitta
Poacher unidentified
Sturgeon poacher
Smooth alligatorfish
Aleutian alligatorfish
Arctic alligatorfish
Spinycheek starsnout
Blackfin poacher
Bering poacher
Warty poacher
Tubenose poacher
Poacher unidentified
Sawback poacher
Longnose poacher

Snailfish unidentified
Smooth lumpsucker
Blacktail snailfish
Snailfish unidentified
Pacific spiny lumpsucker
Snailfish unidentified
Marbled snailfish
Showy snailfish

Pacific sandfish

Table 7 .--Continued.

Family and
Species
Common name

Zaproridae
Zaprora silenus
Prowfish

Ammodytidae
Ammodytes hexapterus
Pacific sand lance

Pleuronectidae
Atheresthes stomias Arrowtooth flounder
Glyptocephalus zachirus
Rex sole
Hippoglossoides elassodon
Flathead sole
Hippoglossus stenolepis
Isopsetta isolepis
Lepidopsetta bilineata
Limanda aspera
Limanda proboscidea
Lyopsetta exilis
Platichthys stellatus
pleuronectes quadrituberculatus
Psettichthys melanostictus
Reinhardtius hippoglossoides

Pacific halibut
Butter sole
Rock sole
Yellowfin sole Longhead dab Slender sole Starry flounder Alaska plaice Sand sole Greenland turbot C /
a/ Nomenclature from Robins (1980), unless otherwise noted.
b/ Nomenclature from Quast and Hall (1972).
c/ Market name.

Table $8 .--S u m m a r y ~ o f ~ a p p a r e n t ~ b i o m a s s e s ~ o f ~ m a j o r ~ t a x o n o m i c ~ g r o u p s ~ f r o m ~ t h e ~ 1980 ~ s u m m e r ~ s u r v e y . ~$

Taxa	Estimated biomass for total survey area (t) a/	```Pro- portion of total biomass```	Estimated biomass by subarea (t)						
			1.	2	3N	3 S	4 N	4 S	5
Gadidae (cods)	2,419,193	0.277	443,829	265,663	434,900	601,646	408,011	253,867	11,279
Pleuroncctidac (flounders)	2,995,395	0.343	1,100,820	168,764	155,042	134,807	564,769	858,914	12,280
Cottidae (sculpins	281,052	0.032	22,630	37,217	9,242	43,707	97,693	28,321	42,242
Zoarcidae (eelpouts)	371,461	0.043	1,525	42,246	142,238	68,283	76,714	14,712	25,743
Agonidae (poachers)	17,340	0.002	4,050	318	87	1,007	9,176	2,697	4
Rajidae (skates)	114,858	0.013	2,074	44,832	11,896	42,849	3,854	9,316	37
Other fish	55,285	0.006	5,070	27,969	1,118	2,487	11,940	5,876	825
Total fish	$\overline{6,254,584}$	0.717	1,579,998	587,009	754,523	894,785	$\overline{1,172,157}$	1,173,703	92,408
Porifera (sponges)	24,327	0.003	9,156	13,320	0	874	717	23	236
Coelenterata (coelenterates)	12,024	. 001	662	3,530	383	6,814	370	203	63
Mollusca	$\overline{167,196}$	$\underline{0.019}$	$\overline{13,818}$	37,063	34,712	$\overline{28,761}$	13,365	35,654	3,822
Gastropoda (snails)	148,734	0.017	13,694	28,894	31,403	22,807	13,259	35,190	3,487
Pelecypoda (bivalves)	762	<0.001	123	18	11	94	105	403	7
Cephalopoda (squids \& octopuses)	17.395	0.002	0	8,151	3,299	5,860	0	. 61	24
Other mollusks	304	≤ 0.001	0	0	0	0	0	0	304
Crustacea	1,317,039	0.151	233,786	113,045	154,520	428,241	176,229	147,402	63,815
Chionocetes sp. (Tanner crab)	808,006	$\overline{0.093}$	49,353	96,555	140,518	263.521	130,599	78,775	48,687
$\frac{\text { Paralithodus }}{(\text { king crab) }} \mathrm{sp}$	381,052	0.044	167,536	6,621	1,972	151,025	8,816	36,969	8,113
Other crab	117,392	0.013	16,876	9,464	4,295	11,793	36,523	31,637	6,804
Total crab	1,306,451	0.150	233,765	112,640	146,785	426,339	175,938	147,380	63,604
Total shrimp	10,490	0.001	18	405	7,735	1,902	291	22	117
Other crustaceans	98	≤ 0.001	3	0	0	0	0	0	94
Echinodermata	702,705	0.081	173,616	31,552	60,631	87,445	152,224	193,632	3,606
Asteroidea (starfish)	607,114	0.070	141,368	3,167	47,877	72,670	150,613	189,934	1,485
ophiuroidea (brittlestars)	55,726	0.006	1,065	23,628	11,983	11,889	1,534	3,698	1,929
```Echinoidea (sea urchins, etc.)```	30,913	0.004	25,658	1,965	162	2,868	77	0	182
Holothuroidea   (sea cucumbers)	8,952	0.001	5,524	2,791	609	18	0	0	9
Ascidiacea	46,240	0.005	1,522	0	0	0	21,721	19,456	3,541
Other invertebrates	197,775	0.023	0	1,430	28	47,063	109,776	39,478	0
Total invertebrates	2,467,306	0.283	432,560	199,940	250,274	599,198	474,403	435,848	75,082
Total catch	8,721,890		2,012,558	786,949	1,004,797	1,493,983	1,646,560	1,609,551	167,490
$\begin{aligned} & \text { Geographical area } \\ & \left(k m^{2}\right) \end{aligned}$	467,524		83,366	60,964	55,631	78,739	91,913	81,540	15,371

[^3]

Figure 5.-- Distribution and relative abundance of total fish during the 1980 survey.


Figure 6. --Distribution and relative abundance of total cods during the 1980 survey.


Figure 7... Distribution and relative abundance of total flounders during the 1980 survey.

TOTAL SCULPINS


Figure 8.-- Distribution and relative abundance of total sculpins during the 1980 survey.

TOTAL EELPOUTS


Figure 9. --Distribution and relative abundance of total eelpouts during the 1980 survey.


Figure 10.-- Distribution and relative abundance of total poachers during the 1980 survey.


Figure 11.-- Distribution and relative abundance of total skates during the 1980 survey.
for the total survey area; fish accounted for $72 \%$ ( 6.25 million $t$ ) of the total biomass and invertebrates 28\% (2.47 million t).

Based on estimates from subareas 1-4 (commonly fished areas in 1979 and 1980), overall biomass decreased from 9.98 million $t$ in 1979 to 8.56 million $t$ in 1980. Total fish declined from 7.32 million to 6.16 million $t$ and except for flatfish and skates which increased, all of the major fish groups decreased in abundance between these years. The biomass of invertebrates remained relatively stable, although 1980 estimates were slightly lower (2.39 million t) than those from 1979 (2.66 million t).

The cods showed a major reduction from 3.69 million $t$ in 1979 to 2.41 million t in 1980. The 1980 estimated biomass for pollock (1.51 million t) decreased to half that of 1979 ( 3.05 million $t$ ) and largely accounted for the reduction in total cods. The 1980 estimated biomass for pollock was considered unreliable as will be discussed in the section "Relative Importance of Individual Species of Fish."

## Relative Importance of Individual Species of Fish

Mean catch rates in kg/ha of the 20 most abundant fish are ranked in order of relative abundance for the total survey in Table 9 and for individual subareas in Tables 10 - 16. The 20 most abundant fish comprised $70 \%$ of the catch in the total area.

As in 1979 (Bakkala et al. 1982) pollock and yellowfin sole were the two most abundant species taken in catches. One of these species ranked highest in all subareas except in subarea 5. Yellowfin sole was the most abundant species in inner shelf subareas (1, $4 \mathrm{~S}, 4 \mathrm{~N})$ where CPUE values ranged from 37.4 to 98.6 $\mathrm{kg} / \mathrm{ha}$; their abundance in outer shelf subareas (2, $3 \mathrm{~S}, 3 \mathrm{~N}$ ) was relatively low (<0.1-7.8 kg/ha). While pollock ranked highest in outer shelf waters with CPUE

Table 9.--Rank order of abundance of the 20 most abundant species of fish taken during the 1980 demersal trawl survey, total area.

Rank	Species	$\begin{gathered} \text { CPUE } \\ (\mathrm{kg} / \mathrm{ha}) \mathrm{a} \end{gathered}$	Proportion of total CPUEb/	Cumulative proportion
1	Yellowfin sole	40.92	0.219	0.219
2	Walleye pollock"	32.27	0.173	0.392
3	Pacific cod	19.41	0.104	0.496
4	Alaska plaice	7.46	0.040	0.536
5	Rock sole	6.05	0.032	0.568
6	Wattled eelpout	4.41	0.024	0.592
7	Greenland turbot	3.68	0.020	0.612
8	Flathead sole	2.75	0.015	0.627
9	Sparse toothed lycod	1.63	0.009	0.636
10	Shortfin eelpout	1.63	0.009	0.645
11	Skate (unidentified)	1.45	0.008	0.653
12	Plain sculpin	1.08	0.006	0.659
13	Longhead dab	1.03	0.006	0.665
14	Arrowtooth flounder	1.02	0.005	0.670
15	Pacific halibut	0.92	0.005	0.675
16	Yellow Irish lord	0.92	0.005	0.680
17	Butterfly sculpin	0.84	0.005	0.685
18	Sculpin (unidentified)	0.73	0.004	0.689
19	Myoxocephalus sp.	0.61	0.003	0.692
20	Shorthorn sculpin	0.56	0.003	0.695

[^4]Table 10.--Rank order of abundance of the 20 most abundant species of fish taken during the 1980 demersal trawl survey, Subarea 1.

Rank	Species	$\begin{gathered} \text { CPUE } \\ (\mathrm{kg} / \mathrm{ha})^{(a)} \end{gathered}$	Proportion of total CPUE /	Cumulative proportion
1	Yellowfin sole	98.56	0.408	0.408
2	Walleye pollock	31.21	0.129	0.537
3	Pacific cod	22.03	0.091	0.628
4	Rock sole	21.29	0.088	0.716
5	Alaska plaice	4.28	0.018	0.734
6	Longhead dab	3.43	0.014	0.748
7	Pacific halibut	1.98	0.008	0.756
8	Flathead sole	1.82	0.008	0.764
9	Plain sculpin	1.77	0.007	0.771
10	Threaded sculpin	0.66	0.003	0.774
11	Starry flounder	0.49	0.002	0.776
12	Sturgeon poacher	0.45	0.002	0.778
13	Rainbow smelt	0.26	0.001	0.779
14	Arrowtooth flounder	0.20	0.001	0.780
15	Great sculpin	0.19	0.001	0.781
16	Capelin	0.17	0.001	0.782
17	Eelpout (unidentified)	0.12	$<0.001$	0.782
18	Big skate	0.11	$<0.001$	0.783
19	Pacific sandfish	0.08	$<0.001$	0.783
20	Starry skate	0.08	$<0.001$	0.784

[^5]Table 11 .--Rank order of abundance of the 20 most abundant species of fish taken during the 1980 demersal trawl survey, Subarea 2.

Rank	Species	$\begin{gathered} \text { CPUE } \\ (\mathrm{kg} / \mathrm{ha}) \text { a/ } \end{gathered}$	Proportion of total CPUEb/	Cumulative proportion
1	Walleye pollock	26.12	0.202	0.202
2	Pacific cod	17.46	0.135	0.337
3	Yellowfin sole	7.76	0.060	0.397
4	Wattled eelpout	6.40	0.050	0.447
5	Flathead sole	6.33	0.049	0.496
6	Rock sole	5.20	0.040	0.536
7	Arrowtooth flounder	5.05	0.039	0.575
8	Sablefish	3.81	0.030	0.605
9	Yellow Irish lord	2.78	0.022	0.627
10	Skate (unidentified)	2.66	0.021	0.648
11	Starry skate	2.37	0.018	0.666
12	Big skate	2.09	0.016	0.682
13	Pacific halibut	1.66	0.013	0.695
14	Bigmouth sculpin	1.08	0.008	0.703
15	Arctic staghorn sculpin	0.75	0.006	0.709
16	Alaska plaice	0.69	0.005	0.714
17	Greenland turbot	0.66	0.005	0.719
18	Armorhead sculpin	0.56	0.004	0.723
$19^{\prime}$	Eelpout (unidentified)	0.53	0.004	0.727
20	Searcher	0.32	0.002	0.729

[^6]Table 12.--Rank order of abundance of the 20 most abundant species of fish taken during the 1980 demersal trawl survey, Subarea 3N.

Rank	Species	$\begin{gathered} \text { CPUE } \\ (\mathrm{kg} / \mathrm{ha}) \mathrm{a} \end{gathered}$	Proportion of total CPUEb/	Cumulative proportion
1	Walleye pollock	57.30	0.317	0.317
2	Pacific cod	20.84	0.115	0.432
3	Greenland turbot	20.36	0.113	0.545
4	Shortfin eelpout	13.69	0.076	0.621
5	Wattled eelpout	11.20	0.062	0.683
6	Flathead sole	7.16	0.040	0.723
7	Skate (unidentified)	$2 \cdot 14$	0.012	0.735
8	Thorny sculpin	1.06	0.006	0.741
9	Sparse toothed lycod	0.68	0.004	0.745
10	Sculpin (unidentified)	0.30	0.002	0.747
11	Pacific halibut	0.26	0.001	0.748
12	Snailfish (unidentified)	0.16	0.001	0.749
13	Shorthorn sculpin	0.11	0.001	0.750
14	Butterfly sculpin	0.11	0.001	0.751
15	Arctic cod	0.04	$<0.001$	0.751
16	Yellow Irish lord	0.04	$<0.001$	0.751
17	Arrowtooth flounder	0.04	$<0.001$	0.751
18	Alaska plaice	0.04	. $<0.001$	0.752
19	Great sculpin	0.02	$<0.001$	0.752
20	Rock sole	0.01	$<0.001$	0.752

[^7]Table 13.--Rank order of abundance of the 20 most abundant species of fish taken during the 1980 demersal trawl survey, Subarea 3S.

Rank	Species	$\begin{gathered} \text { CPUE } \\ (\mathrm{kg} / \mathrm{ha}) \mathrm{a} / \end{gathered}$	Proportion of total CPUEb/	Cumulative proportion
1	Walleye pollock	48.55	0.256	0.256
2	Pacific cod	27.87	0.147	0.403
3	Wattled eelpout	7.59	0.040	0.443
4	Greenland turbot	4.45	0.023	0.466
5	Skate (unidentified)	4.04	0.021	0.487
6	Rock sole	3.90	0.021	0.508
7	Yellowfin sole	2.75	0.014	0.522
8	Flathead sole	2.69	0.014	0.536
9	Yellow Irish lord	1.92	0.010	0.546
10	Arrowtooth flounder	1.75	0.009	0.555
11	Sculpin (unidentified)	1.40	0.007	0.562
12	Starry skate	1.36	0.007	0.569
13	Alaska plaice	1.01	0.005	0.574
14	Eelpout (unidentified)	0.76	0.004	0.578
15	Pacific halibut	0.56	0.003	0.581
16	Arctic staghorn sculpin	0.53	0.003	0.584
17	Bigmouth sculpin	0.45	0.002	0.586
18	Sparse toothed lycod	0.33	0.002	0.588
19	Shorthorn sculpin	0.31	0.002	0.590
20	Searcher	0.26	0.001	0.591

a/ Total effort $=198.9$ ha.
b/ Proportion of total CPUE, all fish and invertebrates combined. Total CPUE $=189.77 \mathrm{~kg} / \mathrm{ha}$.

Table 14.--Rank order of abundance of the 20 most abundant species of fish taken during the 1980 demersal trawl survey, Subarea 4 N .

Rank	Species	$\begin{gathered} \text { CPUE } \\ (\mathrm{kg} / \mathrm{ha})^{\mathrm{a}} / \end{gathered}$	Proportion of total CPUEb/	Cumulative proportion
1	Yellowf in sole	37.36	0.208	0.208
2	Walleye pollock	24.49	0.137	0.345
3	Pacific cod	19.75	0.110	0.455
4	Alaska plaice	19.13	0.107	0.562 .
5	Sparse toothed lycod	4.68	0.026	0.588
6	Wattled eelpout	3.66	0.020	0.608
7	Myoxocephalus sp.	3.03	0.017	0.625
8	Plain sculpin	2.47	0.014	0.639
9	Sculpin (unidentified)	1.89	0.011	0.650
10	Greenland turbot	1.59	0.009	0.659
11	Butterfly sculpin	1.33	0.007	0.666
12	Rock sole	1.26	0.007	0.673
13	Sturgeon poacher	0.99	0.006	0.679
14	Yellow Irish lord	0.74	0.004	0.683
15	Capelin	0.72	0.004	0.687
16	Longhead dab	0.68	0.004	0.691
17	Shorthorn sculpin	0.65	0.004	0.695
18	Pacific halibut	0.62	0.003	0.698
19	Flathead sole	0.61	0.003	0.701
20	Skate (unidentified)	0.41	0.002	0.703

a / Total effort = 243.6 ha.
b/ Proportion of total CPUE, all fish and invertebrates combined. Total CPUE $=179.17 \mathrm{~kg} / \mathrm{ha}$.

Table $15 .--$ Rank order of abundance of the 20 most abundant species of fish taken during the 1980 demersal trawl survey, Subarea 4S.

Rank	Species	$\begin{gathered} \text { CPUE } \\ (\mathrm{kg} / \mathrm{ha}) \mathrm{a} / \end{gathered}$	Proportion of total CPUEb/	Cumulative proportion
1	Yellowfin sole	83.10	0.421	0.421
2	Walleye pollock	19.57	0.099	0.520
3	Alaska plaice	14.69	0.074	0.594
4	Pacific cod	11.41	0.058	0.652
5	Rock sole	3.87	0.020	0.672
6	Longhead dab	1.66	0.008	0.680
7	Plain sculpin	1.34	0.007	0.687
8	wattled eelpout	1.31	0.007	0.694
9	Flathead sole	0.80	0.004	0.698
10	Great sculpin	0.79	0.004	0.702
11	Big skate	0.66	0.003	0.705
12	Pacific halibut	0.60	0.003	0.708
13	Skate (unidentified)	0.46	0.002	0.710
14	Yellow Irish lord	0.39	0.002	0.712
15	Sculpin (unidentified)	0.32	0.002	0.714
16	Starry flounder	0.31	0.002	0.716
17	Sturgeon poacher	0.25	0.001	0.717
18	Capelin	0.24	0.001	0.718
19	Sparse toothed lycod	0.23	0.001	0.719
20	Rainbow smelt	0.18	0.001	0.720

[^8]Table 16.--Rank order of abundance of the 20 most abundant species of. fish taken during the 1980 demersal trawl survey, Subarea 5.

Rank	Species	$\begin{gathered} \text { CPUE } \\ (\mathrm{kg} / \mathrm{ha} \mathrm{a} / \end{gathered}$	Proportion of total CPUEb/	Cumulative proportion
1	Butterfly sculpin	16.48	0.151	0.151
2	Sparse toothed lycod	16.24	0.149	0.300
3	Shorthorn sculpin	10.27	0.094	0.394
4	Pacific cod	4.82	0.044	0.438
5	Alaska plaice	3.41	0.031	0.469
6	Walleye pollock	2.42	0.022	0.491
7	Greenland turbot	2.35	0.022	0.513
8	Yellowfin sole	1.13	0.010	0.523
9	Flathead sole	1.06	0.010	0.533
10	Plain sculpin	0.71	0.007	0.540
11	Snailfish (unidentified)	0.45	0.004	0.544
12	Polar eelpout	0:34	0.003	0.547
13	Wattled eelpout	0.16	0.001	0.548
14	Arctic cod	0.10	0.001	0.549
15	Capelin	0.08	0.001	0.550
16	Pacific halibut	0.03	$<0.001$	0.550
17	Skate (unidentified)	0.02	$<0.001$	0.550
18	Eelpout (unidentified)	0.02	$<0.001$	0.551
19	Gymnocanthus sp.	0.01	$<0.001$	0.551
20	Prickleback (unidentified)	0.01	$<0.001$	0.551

[^9]values ranging from 26.1 to $57.3 \mathrm{~kg} / \mathrm{ha}$, their abundance in inner shelf waters was also relatively high at $19.6-31.2 \mathrm{~kg} / \mathrm{ha}$.

Although pollock was one of the highest ranking species, their abundance was believed to be underestimated by the 1980 survey. As indicated in the previous section, the pollock biomass estimate in 1980 was approximately half that in 1979. Evidence from other sources of data, such as from the commercial fishery, demonstrated no change in the relative abundance of pollock between 1979 and 1980 (Bakkala et al. 1983). These authors concluded that the 1980 survey data provided unreliable estimates of-abundance of pollock.

Reasons for the low biomass estimate of pollock in 1980 are unknown, but may be related to their semidemersal distribution. A high proportion (approximately 70\%) of the pollock population was found to occupy midwater depths during the 1979 survey (Traynor and Nelson 1983), and this proportion may vary between years. A higher proportion of the population may have occupied the water column above that sampled by the demersal trawls in 1980 compared to other years.

Abundance, Distribution, and Size and Age Composition of Principal Species of Fish

Tables 17-34 and Figures $12-39$ show findings from the 1980 summer survey for each of the principal commercially important species of demersal fish. The tables and figures will illustrate for the overall survey area and for individual subareas the abundance in terms of CPUE, biomass and population numbers, and geographical distribution. They also show length distribution and mean size of each species. Where available, the age distribution of the populations will also be shown.

Additional biological data are presented in the appendices.

 subareas combined, 1980 demersal trawl survey.

Subarea	$\begin{gathered} \text { Mean } \\ \text { CPUE } \\ (\mathrm{kg} / \mathrm{ha}) \end{gathered}$	Estimated apparent biomass ( $t$ )	Proportion of total estimated biomass	Estimated apparent population ( $10^{6}$ )	Proportion of total estimated population	Mean size per individual	
						$\begin{gathered} \text { Weight } \\ (\mathrm{kg}) \end{gathered}$	$\begin{gathered} \text { Length } \\ (\mathrm{cm}) \end{gathered}$
1	31.21	260,180	0.172	636	0.107	0.409	38.36
2	26.12	159,222	0.106	540	0.091	0.295	33.14
3N	57.30	318,738	0.211	1,237	0.207	0.258	27.75
3 S	48.55	382,223	0.253	1,917	0.321	0.199	26.08
4N	24.49	225,045	0.149	1,130	0.189	0.199	22.50
4S	19.57	159,523	0.106	458	0.077	0.348	34.72
5	2.42	3,718	0.002	48	0.008	0.077	15.66
All   subareas combinedb	32.27	1,508,650		5,966		0.253	28.27
95\%							
confidence		1,084,854-					
interval		1,932,445					Y

[^10]
## WALLEYE POLLOCK

Table 18 .--Estimated population size of walleye pollock age groups by subarea and for all subareas combined (millions of fish).

Age	$\begin{gathered} \text { Year } \\ \text { class } \end{gathered}$	Subarea							All   subareas combineda/	Proportion of total
		1	2	3N	35	4N	4 S	5		
0	1980	0.40	-	2.35	0.02	29.46	3.40	3.24	38.86	0.0065
1	1979	5.67	0.61	436.24	799.74	737.15	23.43	41.21	2,044.04	0.3426
2	1978	27.28	260.67	259.12	472.05	48.51	163.30	0.41	1,231.35	0.2064
3	1977	333.26	147.61	285.26	367.02	133.23	114.11	0.46	1,380.95	0.2314
4	1976	140.54	34.67	85.16	87.79	32.41	40.46	0.17	421.20	0.0706
5	1975	77.89	45.03	75.85	80.65	47.20	43.83	0.69	371.14	0.0622
6	1974	30.44	25.01	40.07	44.23	34.85	27.40	0.67	202.66	0.0340
7	1973	8.15	9.96	16.64	19.29	17.68	11.96	0.33	84.02	0.0141
8	1972	5.28	7.94	14.74	19.42	20.86	12.71	0.54	81.48	0.0137
9	1971	2.78	3.39	8.71	11.39	11.19	6.54	0.25	44.24	0.0074
10	1970	2.36	3.09	6.81	8.36	9.43	5.59	0.20	35.85	0.0060
11	1969	1.10	0.99	3.26	3.69	4.39	2.50	0.11	16.06	0.0027
12	1968	0.69	0.80	2.14	2.51	3.02	1.83	0.06	11.06	0.0019
13	1967	0.11	0.13	0.27	0.37	0.60	0.29	0.02	1.79	0.0003
14	1966	0.08	0.09	0.32	0.36	0.41	0.22	0.01	1.48	0.0002
15	1965	0.05	0.01	0.09	0.04	0.06	0.23	$<0.01$	0.48	$<0.0001$
All ages combineda/		636.10	540.02	1,237.02	1,916.91	1,130.45	457.79	48.36	5,966.65	

a/ Minor discrepancies between sums by subareas and age groups and totals due to rounding.

## WALLEYE POLLOCK



## 3 S



2
mean Length = 33.1


## All subareas combined <br> EAN LENGTH $=28.3$



## Inner shelf subareas




4S
mean length = 34.7


7
MEAN LENGTH $=38.4$



Figure 14. --Length and age composition of walleye pollock (sexes combined) from the overall survey area in 1980.

PACIFIC COD


Figure 15.--Distribution and relative abundance of Pacific cod during the 1980 survey.

## PACIFIC COD

 subareas combined, 1980 demersal trawl survey.

Subarea	$\begin{gathered} \text { Mean } \\ \text { CPUEa/ } \\ (\mathrm{kg} / \mathrm{ha}) \end{gathered}$	Estimated apparent biomass ( $t$ )	Proportion of total estimated biomass	Estimated apparent population ( $10^{6}$ )	Proportion of total estimated population	Mean size per individual	
						Weight   (kg)	Length   (cm)
1	22.03	183,623	0.202	286	0.260	0.643	39.58
2	17.46	106,440,	0.117	59	0.054	1.812	52.53
3N	20.84	115,912	0.128	131	0.119	0.883	41.70
3 S	27.87	219,422	0.242	194	0.176	1.132	44.85
4N	19.75	181,498	0.200	288	0.262	0.630	38.13
4S	11.41	93,027	0.103	124	0.113	0.752	41.11
5	4.82	7,400	0.008	19	0.017	0.381	32.73
All subareas combinedb	19.41	907,323		1,101		0.824	41.12
95\%   confidence   interval		$\begin{array}{r} 728,560- \\ 1,086,087 \end{array}$					

a/ CPUE = catch per unit effort
b/ Minor discrepancies between sums over subareas arid totals due to rounding.

## PACIFIC COD

Table 20 . --Estimated population size and mean length of Pacific cod age groups for all subareas combined (millions of fish).

Age	Year   class	Population number	Proportion of total	Mean length at age (cm)
1	1979	42.61	0.0387	18.9
2	1978	441.23	0.4008	36.0
3	1977	476.17	0.4326	43.9
4	1976	93.32	0.0848	51.4
5	1975	30.87	0.0280	57.3
6	1974	6.49	0.0059	62.5
7	1973	2.07	0.0019	65.6
8	1972	3.26	0.0030	69.8
9	1971	3.43	0.0031	74.5
$\geq 10$	-	1.37	0.0012	81.2
All ages combined		1,100.82		41.1

## PACIFIC COD

## Outer shelf subareas

## 3N

MEAN LENGTH = 41.7

$3 S$



All subareas combined
hean length = 41.1



Inner shelf subareas
5



## 1

mean length = jg. 6


Figure 16.-- Size composition of Pacific cod (sexes combined) taken during the 1980 survey by subarea and for subareas combined.

## PACIFIC COD




Figure 17.-- Length and age composition of Pacific cod (sexes combined) from the overall survey area in 1980.

## SABLEFISH



Figure 18.--Distribution and relative abundance of sablefish during the 1980 survey.

## SABLEFISH

Table 21 .--Abundance estimates and mean size of sablefish by subarea and subareas combined, 1980 demersal trawl survey.

Subarea	$\begin{gathered} \text { Mean } \\ \text { CPUE } \\ (\mathrm{kg} / \mathrm{ha}) \end{gathered}$	Estimated apparent biomass ( t )	```Proportion of total estimated biomass```	Estimated apparent population ( $10^{3}$ )	Proportion of total estimated population	Mean size per individual	
						$\begin{gathered} \text { Weight } \\ (\mathrm{kg}) \end{gathered}$	Length (cm)
			$\cdots$				
1	0	0	0	0	0	-	-
2	3.81	23,239	0.987	19,473	0.984	1.193	50.36
3N	0	0	0	0	0	-	-
35	0.03	268	0.011	271	0.014	0.992	56.00
4N	0	0	0	0	0	-	-
4S	<0.01	30	0.001	43	0.002	0.680	53.00
5	0	0	0	0	0	-	-
All   subareas combined ${ }^{\text {b/ }}$	0.50	23,538		19,788		1.190	50.41
$\begin{aligned} & 95 \% \\ & \text { confidence } \\ & \text { interval } \end{aligned}$		0-62,772					

a/ CPUE = catch per unit effort.
b/ Minor discrepancies between sums over subareas and totals due to rounding.

## SABLEFISH

Table 22.--Estimated population size of sablefish age groups by subarea and for all subareas combined (millions of fish).

Age	$\begin{gathered} \text { Year } \\ \text { class } \end{gathered}$	Subarea							All   subareas combineda/	Proportion of total
		1	2	3N	3S	4N	4 S	5		
$\leq 2$	-	-	0.28	-	-	-	-	-	0.28	0.0142
3	1977	-	15.26	-	0.05	-	0.02	-	15.34	0.7799
4	1976	-	3.42	-	0.10	-	0.02		3.54	0.1800
$\geq 5$	-	-	0.52	-	-				0.52	0.0264
All   com	es neda/		19.47		0.15	-	0.04	-	$19.67{ }^{\text {b }}$	

a/ Minor discrepancies between sums by subareas and age groups and totals due to rounding.
b/ Total population number differs from that given in Table 21 because of the absence of length-frequency data in subarea $3 S$ with which to calculate population numbers by age.

## SABLEFISH

## Outer shelf subareas

 3 N

## 3S



2



## All subareas combined



## Inner shelf subareas


$4 N$


4S


Figure $19 .--$ Size composition of sablefish (sexes combined) taken during the 1980 survey by subarea and for subareas combined.

SABLEFISH



Figure 20.-- Length and age composition of sablefish (sexes combined) from the overall survey area in 1980.

YELLOWFIN SOLE


Figure $21 .--$ Distribution and relative abundance of yellowfin sole during the 1980 survey.

## YELLOWFIN SOLE

Table 23 .--Abundance estimates of yellowfin sole by subarea and for subareas combined, 1980 demersal trawl survey.

Subarea	$\begin{gathered} \text { Mean } \\ \text { CPUEa/ } \\ (\mathrm{kg} / \mathrm{ha}) \end{gathered}$	Estimated apparent biomass ( $t$ )	Proportion of total estimated biomass	Estimated apparent population (x $10^{6}$ )	Proportion of total estimated population	Mean size per individual	
						$\begin{gathered} \text { Weight } \\ (\mathrm{kg}) \end{gathered}$	$\begin{gathered} \text { Length } \\ (\mathrm{cm}) \end{gathered}$
1	98.56	821,490	0.429	5,879	0.457	0.140	23.35
2	7.76	47,321	0.025	241	0.019	0.197	25.98
3N	<0.01	24	$<0.001$	<1	$<0.001$	0.107	30.06
3S	2.75	21,649	0.011	86	0.007	0.251	27.09
4N	37.36	343,291	0.179	2,332	0.181	0.147	22.13
4S	83.10	677,458	0.354	4,314	0.335	0.157	23.03
5	1.13	1,742	0.001	8	0.001	0.225	26.32
All							
combined ${ }^{\text {b }}$	40.92	1,912,976		12,860		0.149	23.09
95\%							
confidence		1,593,360-					
interval		2,232,593					

a/ CPUE = catch per unit effort
b/ Minor discrepancies between sums over subareas and totals due to rounding.
yELLOWFIN SOLE
Table 24 .--Estimated population. size of yellowfin sole age groups by subarea and for all subareas combined (millions of fish).

Age	$\begin{array}{r} \text { Year } \\ \text { class } \end{array}$	Subarea							$\begin{aligned} & \text { All } \\ & \text { subareas } \\ & \text { combineda/ } \end{aligned}$	Proportion of total
		1	2	3N	3 S	4N	4 S	5		
$\leq 2$	-	9.64	-	-	-	4.31	10.34	-	24.30	0.0019
3	1977	36.71	-	-	-	53.11	93.12	-	182.94	0.0142
4	1976	157.98	0.15	-	$<0.01$	202.47	303.67	-	664.27	0.0517
5	1975	450.42	5.25	-	0.34	270.45	379.60	0.02	1,106.08	0.0860
6	1974	793.37	17.84	-	2.34	341.01	499.51	0.27	1,654.34	0.1286
7	1973	1,142.35	34.51	0.02	7.40	414.56	672.06	0.89	2,271.80	0.1767
8	1972	457.39	16.03	0.01	4.71	132.64	262.77	0.61	874.15	0.0680
9	1971	574.67	24.34	0.02	9.46	165.23	361.58	0.95	1,136.25	0.0884
10	1970	740.48	36.71	0.04	15.65	218.81	507.97	1.43	1,521.10	0.1183
11	1969	583.63	34.20	0.03	14.81	180.17	423.46	1.26	1,237.56	0.0962
12	1968	512.15	36.33	0.02	16.96	172.74	413.19	1.23	1,152.63	0.0896
13	1967	270.43	21.76	0.02	9.64	105.31	240.24	0.69	648.09	0.0504
14	1966	99.25	8.18	$<0.01$	3.08	40.42	84.83	0.24	236.01	0.0184
15	1965	24.96	2.71	0.01	1.03	14.72	29.48	0.07	72.98	0.0057
16	1964	11.98	1.36	0.01	0.48	7.65	14.67	0.03	36.18	0.0028
17	1963	8.44	0.75	0.01	0.34	3.88	9.59	0.02	23.04	0.0018
18	1962	3.00	0.40	0.01	0.08	2.84	5.36	$<0.01$	11.70	0.0009
19	1961	0.59	0.08	0.01	0.02	1.05	1.50	<0.01	3.25	0.0003
21	1959	0.07	-	-	<0.01	0.29	0.54	-	0.90	0.0001
24	1958	1.27	-	-	-	0.03	0.68	-	1.98	0.0002
All ages combineda/		5,878.77	240.61	0.22	86.34	2,331.69	4,314.18	7.73	12,859.55	

a/ Minor discrepancies between sums by subareas and age groups and totals due to rounding.


Figure 22.--Size composition of yellow-fin sole (sexes combined) taken during the 1980 survey by subarea and for subareas combined.

## YELLOWFIN SOLE



Figure 23. --Length and age composition of yellowfin sole (sexes combined) from the overall survey area in 1980.


Figure 24.--Distribution and relative abundance of rock sole during the 1980 survey.

ROCK SOLE

Table $25 .--A b u n d a n c e ~ e s t i m a t e s ~ o f ~ r o c k ~ s o l e ~ b y ~ s u b a r e a ~ a n d ~ s u b a r e a s ~ c o m b i n e d, ~$ 1980 demersal trawl survey.

Subarea	Mean CPUEa/ (kg/ha)	Estimated apparent biomass ( $t$ )	Proportion of total estimated biomass	Estimated apparent population ( $10^{6}$ )	Proportion of total estimated population	Mean size per individual	
						Weight   (kg)	Length (cm)
1	21.29	177,450	0.627	1,153	0.797	0.154	22.31
2	5.20	31,676	0.112	92	0.064	0.345	29.62
3N	0.01	83	$<0.001$	<1	$<0.001$	0.354	-
35	3.90	30,680	0.108	71	0.049	0.432	31.92
4N	1.26	11,593	0.041	27	0.019	0.432	36.11
4S	3.87	31,526	0.111	104	0.072	0.302	28.63
5	<0.01	6	$<0.001$	<1	$<0.001$	0.136	-
All   subareas combinedb	6.05	283,014		1,447		0.196	23.87
95\% confidence interval		$\begin{aligned} & 187,880- \\ & 378,148 \end{aligned}$					

```
a/ CPUE = catch per unit effort
b/ Minor discrepancies between sums over subareas and totals due to rounding.
```

ROCK SOLE
Table 26.--Estimated population size of rock sole age groups by subarea and for all subareas combined (millions of fish).

a/ Minor discrepancies between sums by subareas and age groups and totals due to rounding.

## ROCK SOLE

## Outer shelf subareas



## $3 S$



2


All subareas combined
MEAN LENGTH $=24.0$



4N


4S


1


Figure 25.-- Size composition of rock sole (sexes combined) taken during the 1980 survey by subarea and for subareas combined.

## ROCK SOLE



Figure 26.-- Length and age composition of rock sole (sexes combined) from the overall survey area in 1980.


Figure 27.--Distribution and relative abundance of flathead sole during the 1980 survey.

## FLATHEAD SOLE

Table $27 .--A b u n d a n c e ~ e s t i m a t e s ~ o f ~ f l a t h e a d ~ s o l e ~ b y ~ s u b a r e a ~ a n d ~ f o r ~ s u b a r e a s ~$ combined, 1980 demersal trawl survey.

Subarea	$\begin{gathered} \text { Mean } \\ \text { CPUEa/ } \\ (\mathrm{kg} / \mathrm{ha}) \end{gathered}$	Estimated apparent biomass ( $t$ )	Proportion of total estimated biomass	Estimated apparent population (103)	Proportion of total estimated population	Mean size per individual	
						Weight   (kg)	Length (cm)
1	1.82	15,135	0.118	90,959	0.120	0.166	26.26
2	6.33	38,611	0.301	264,888	0.350	0.146	24.26
3N	7.16	39,805	$0.310^{\prime}$	210,103	0.278	0.189	26.06
3S	2.69	21,146	0.165	127,004	0.168	0.166	25.70
4N	0.61	5,585	0.043	27,001	0.036	0.207	28.25
4 S	0.80	6,496	0.051	27,418	0.036	0.237	27.92
5	1.06	1,625	0.013	9,148	0.012	0.178	24.08
All   subareas   combinedb/	2.75	128,403		756,521		0.170	25.53
$\begin{aligned} & \text { 95\% } \\ & \text { confidence } \\ & \text { interval } \end{aligned}$		$\begin{aligned} & 103,891- \\ & 152,914 \end{aligned}$	-				

a/ CPUE = catch per unit effort
b/ Minor discrepancies between sums over subareas and totals due to rounding.

FLATHEADSOLE
Table 28 .--Estimated population size of flathead sole age groups by subarea and for all subareas combined (millions of fish).

Age	$\begin{array}{r} \text { Year } \\ \text { class } \end{array}$	Subarea							Allsubareascombineda	Proportion of total
		1	2	3N	35	4N	4 S	5		
$\leq 2$	-	0.28	. 20.76	3.15	10.88	0.13	0.17	0.35	35.72	0.0472
3	1977	5.07	59.13	21.36	21.24	1.82	2.53	1.89	113.04	0.1494
4	1976	18.01	36.09	30.61	13.27	3.55	4.27	1.78	107.58	0.1422
5	1975	13.48	21.06	21.92	8.45	2.28	2.77	0.96	70.92	0.0937
6	1974	9.29	13.01	20.52	7.43	1.84	1.61	0.54	54.24	0.0717
7	1973	5.43	11.52	16.95	6.56	1.66	1.15	0.42	43.68	0.0577
8	1972	7.56	13.97	19.26	7.60	2.18	1.67	0.58	52.81	0.0698
9	1971	12.62	29.04	31.33	14.74	3.73	3.60	1.04	96.10	0.1270
10	1970	2.48	11.32	8.12	5.57	1.59	1.29	0.30	30.68	0.0406
11	1969	3.44	12.71	7.58	8.13	2.08	1.77	0.23	35.94	0.0475
12	1968	5.53	14.67	12.34	8.47	2.29	2.20	0.48	45.99	0.0608
13	1967	4.48	9.24	9.53	5.98	1.68	1.52	0.28	32.71	0.0432
14	1966	0.98	5.37	3.11	3.12	0.76	0.72	0.09	14.15	0.0187
15	1965	1.36	3.49	3.42	2.38	0.53	0.81	0.11	12.10	0.0160
16	1964	0.20	1.17	0.29	1.20	0.29	0.37	0.04	3.56	0.0047
17	1963	0.13	0.75	0.10	0.58	0.21	0.30	0.03	2.10	0.0028
18	1962	0.52	1.35	0.48	1.15	0.34	0.38	0.01	4.24	0.0056
19	1961	-	0.12	0.01	0.17	0.05	0.10	0.02	0.47	0.0006
$\geq 20$	-	0.09	0.13	-	0.06	-	0.21	-	0.49	0.0006

All ages
$\begin{array}{llllllllll}\text { combineda/ } & 90.96 & 264.89 & 210.10 & 127.00 & 27.00 & 27.42 & 9.15 & 756.52\end{array}$
a/ Minor discrepancies between sums by subareas and age groups and totals due to rounding.

## FLATHEAD SOLE



3S
MEN LENGTH = 25.7



2
hean length = 24.3


## All subareas combined



## Inner shelf subareas

5
mean length = 24.1


4N

$4 S$

1


Figure 28.--Size composition of flathead sole (sexes combined ) taken during the 1980 survey by subarea and for subareas combined.

## FLATHEAD SOLE



Figure 29. --Length and age composition of flathead sole (sexes combined) from the overall survey area in 1980.


Figure 30.--Distribution and relative abundance of Alaska plaice during the 1980 survey.

## ALASKA PLAICE

Table 29.--Abundance estimates for Alaska plaice by subarea and for subareas combined, 1980 demersal trawl survey.

Subarea	Mean CPUEa/ (kg/ha)	Estimated apparent biomass ( $t$ )	Proportion of total estimated biomass	Estimated apparent population (103)	Proportion of total estimated population	Mean size per individual	
						```Weight (kg)```	Length (cm)
1	4.28	35,654	0.102	84,371	0.110	0.423	31.84
2	0.69	4,204	0.012	7,026	0.009	0.598	-
3N	0.04	197	0.001	387	0.001	0.509	-
3 S	1.01	7,948	0.023	11,634	0.015	0.683	33.59
4N	19.13	175,821	0.504	390,872	0.512	0.450	31.99
4 S	14.69	119,755	0.343	262,021	0.343	0.457	31.03
5	3.41	5,241	0.015	7,385	0.010	0.710	35.65

All
subareas
$\begin{array}{lllll}\text { combined } / 2 & 7.46 & 348,821 & 763,697 & 0.457\end{array}$

95\%
confidence 286,349-
interval
411, 293

```
a/ CPUE = catch per unit effort
b/ Minor discrepancies between sums over subareas and totals due to rounding.
```


Figure 32.-- Distribution and relative abundance of Greenland turbot during the 1980 survey.

GREENLAND TURBOT

Table 30 .--Estimated abundance and mean size of Greenland turbot by subarea and subareas combined, 1980 demersal trawl surveys.

Subarea	Mean CPUE (kg/ha)	Estimated apparent biomass (t)	Proportion of total estimated biomass	Estimated apparent population (103)	Proportion of total estimated population	Mean size per individual	
						$\begin{gathered} \text { Weight } \\ (\mathrm{kg}) \end{gathered}$	$\begin{aligned} & \text { Length } \\ & (\mathrm{cm}) \end{aligned}$
1	0.03	276	0.002	1,336	0.001	0.206	-
2	0.66	4,041	0.023	3,553	0.004	1.137	51.46
3N	20.36	113,258	0.658	604,147	0.672	0.187	27.47
3 S	4.45	35,006	0.203	170,856	0.190	0.204	29.08
4N	1.59	14,577	0.085	82,892	0.092	0.176	27.13
4 S	0.17	1,422	0.008	6,828	0.008	0.208	37.17
5	2.35	3,614	0.021	30,085	0.033	0.120	23.08

All
subareas
combinedb/ 3.68 172,193
899,697
$0.191 \quad 27.75$

95\%

confidence 133,930-
interval 210,455
a/ CPUE = catch per unit effort
b/ Minor discrepancies between sums over subareas and totals due to rounding.

GREENLAND TURBOT

Table 31 .--Estimated population size of Greenland turbot age groups by subarea and for all subareas combined (millions of fish).

Age	Year class	Subarea							```All subareas combineda/```	Proportion of total
		1	2	3N	3 S	4N ...	4 S	5		
							,			
≤ 1	-	-	-	31.77	9.12	11.27	-	5.69	57.86	0.0644
2	1978	-	0.75	307.38	72.67	35.48	0.26	17.79	434.33	0.4835
3	1977	-	0.27	213.67	63.81	26.19	3.64	5.74	313.32	0.3488
4	1976	-	-	40.60	18.97	8.90	2.22	0.87	71.57	0.0797
5	1975	-	0.37	8.18	4.30	0.85	0.60	-	14.30	0.0159
6	1974	-	0.93	2.28	1.44	0.20	0.10	-	4.94	0.0055
7	1973	-	0.19	0.26	0.44	-	-	-	0.89	0.0010
≥ 18	-	-	1.03	-	0.12	-	-	-	1.15	0.0013
All ages combineda/			3.55	604.15	170.86	82.89	6.83	30.08	$898.36{ }^{\text {b }}$	

a/ Minor discrepancies between sums by subareas and age groups and totals due to rounding.
b/ Total population number differs from that given in Table 30 because of the absence of length-frequency data in subarea 1 with which to calculate population numbers by age.

GREENLAND TURBOT

Outer shelf subareas

35

2

Inner shelf subareas
5
mean lemgit - 23.1

4S

1

Figure $33 .--S i z e ~ c o m p o s i t i o n ~ o f ~ G r e e n l a n d ~ t u r b o t ~(s e x e s ~ c o m b i n e d) ~ t a k e n ~ d u r i n g ~$ the 1980 survey by subarea and for subareas combined.

GREENLAND TURBOT

Figure 34. --Length and age composition of Greenland turbot (sexes combined) from the overall survey area in 1980.

Figure 35.--Distribution and relative abundance of arrowtooth flounder during the 1980 survey.

ARROWTOOTH FLOUNDER

Table 32 .--Estimated abundance and mean size of arrowtooth flounder by subarea and subareas combined, 1980 demersal trawl survey.

Subarea	$\begin{gathered} \text { Mean } \\ \text { CPUE } \mathbf{a} / \\ \text { (kg/ha) } \end{gathered}$	Estimated apparent biomass (t)	Proportion of total estimated biomass	Estimated apparent population (10^{3})	Proportion of total estimated population	Mean size per individual	
						Weight (kg)	Length (cm)
1	0.20	1,656	0.035	13,824	0.074	0.120	-
2	5.05	30,804	0.644	109,124	0.582	0.282	30.44
3N	0.04	232	0.005	762	0.004	0.304	-
35	1.75	13,768	0.288	57,707	0.308	0.239	29.38
4N	0.01	124	0.003	452	0.002	0.274	-
45	0.15	1,234	0.026	5,750	0.031	0.215	-
5	0	0	0	0	0	-	-
All subareas combined ${ }^{\text {b/ }}$	1.02	47,817		187,619		0.255	30.07
95\%							
confidence		36,271-					
interval		59,362					

a/ CPUE = catch per unit effort
b/ Minor discrepancies between sums over subareas and totals due to rounding.

ARROWTOOTH FLOUNDER

Table $33 .--E s t i m a t e d ~ p o p u l a t i o n ~ s i z e ~ o f ~ a r r o w t o o t h ~ f l o u n d e r ~ a g e ~ g r o u p s ~$ by subarea and for all subareas combined (millions of fish).

Age	$\begin{array}{r} \text { Year } \\ \text { class } \end{array}$	Subarea							All subareas combined ${ }^{\text {a/ }}$	Proportion of total
		$\overline{1}$	2	3N	3 S	4N	4 S	5		
≤ 1	-	-	1.04	-	1.40	-	-	-	2.43	0.0146
2	1978	-	7.26	-	3.58	-	-	-	10.84	0.0650
3	1977	-	57.66	-	33.72	-	-	-	91.38	0.5477
4	1976	-	26.24	-	12.28	-	-	-	38.52	0.2309
5	1975	-	9.93	-	4.87	-	-	-	14.80	0.0887
6	1974	-	3.37	-	1.31	-	-	-	4.68	0.0281
7	1973	-	1.38	-	0.34	-	-	-	1.72	0.0103
8	1972	-	1.72	-	0.18	-	-	-	1.90	0.0114
9	1971	-	0.31	-	0.02	-	-	-	0.33	0.0020
≥ 10	-	-	0.22	-	-	-	-	-	0.22	0.0013

All ages
combineda/ - 109.12 - 57.71 - - 166.83 b/
a/ Minor discrepancies between Sums by subareas and age groups and totals due to rounding.
b/ Total population number differs from that given in Table 31 because of the absence of length-frequency data in subareas $1,3 \mathrm{~N}, 4 \mathrm{~N}, 4 \mathrm{~S}$, and 5 with which to calculate population numbers by age.

ARROWTOOTH FLOUNDER

Figure 36.--Size composition of arrowtooth flounder (sexes combined) taken during the 1980 survey by subarea and for subareas combined.

ARROWTOOTH FLOUNDER

Figure 37.-- Length and age composition of arrowtooth flounder (sexes combined) from the overall survey area in 1980.

Figure 38. --Distribution and relative abundance of Pacific halibut during the 1980 survey.

PACIFIC HALIBUT

Table $34 .--A b u n d a n c e ~ e s t i m a t e s ~ a n d ~ m e a n ~ s i z e ~ o f ~ P a c i f i c ~ h a l i b u t ~ b y ~ s u b a r e a ~ a n d ~$ for subareas combined, 1980 demersal trawl survey.

Subarea	$\begin{gathered} \text { Mean } \\ \text { CPUE } \\ (\mathrm{kg} / \mathrm{ha}) \end{gathered}$	Estimated apparent biomass (t)	Proportion of total estimated biomass	Estimated apparent population (10^{3})	Proportion of total estimated population	Mean size per individual	
						$\begin{gathered} \hline \text { Weight } \\ (\mathrm{kg}) \end{gathered}$	$\begin{gathered} \text { Length } \\ \text { (cm) } \end{gathered}$
1	1.98	16,468	0.381	17,493	0.405	0.941	38.79
2	1.66	10,141	0.235	3,486	0.081	2.909	56.70
3N	0.26	1,442	0.033	1,186	0.027	1.216	43.16
3 S	0.56	4,408	0.102	9,003	0.209	1.490	32.49
4N	0.62	5,744	0.133	6,344	0.147	0.905	39.25
4 S	0.60 .	4,925	0.114	5,535	0.128	0.890	38.66
5	0.03	52	0.001	130	0.003	0.396	34.72
All							
subareas combinedb/	0.92	43,179		43.177		1.000	39.08
95\%							
confidence		33,884-					
interval		52,474					

a/ CPUE = catch per unit effort
b/ Minor discrepancies between sums over subareas and totals due to rounding.

PACIFIC HALIBUT

Outer shelf subareas

3N
MEAN LENGTH = 4J.2

3S

MEAN LENGTH = $\mathbf{3 2 . 5}$

2

MEAN LENGTH $=56.7$

All subareas combined

Inner shelf subareas

5
mean length = 34.7

4N
MEAN LENGTH $=39.2$

4S

1

Figure 39.--Size composition of Pacific halibut (sexes combined) taken during the 1980 survey by subarea and for subareas combined.

REFERENCES

Alverson, D. L., and W. T. Pereyra. 1969. Demersal fish explorations in the northeastern Pacific Ocean -- an evaluation of exploratory fishing methods and analytical approach\& to stock size and yield forecasts. J. Fish. Res. Board Can. 26:1985-2001.

Bakkala, R. G. 1981. Pacific cod of the eastern Bering Sea. Unpubl. manuscr., 44 p. Northwest and Alaska Fish. Cent., Natl. Mar. Fish. Serv., NOAA, 2725 Montlake Blvd. E., Seattle, WA 98112.

Bakkala, R. G., T. M. Sample, M. S. Bohle, J. A. June, A. M. Shimada, and Y. Umeda. 1982. Data report: 1979 demersal trawl survey of the eastern Bering Sea continental shelf and slope. U.S. Dep. Commer., NOAA Tech. Memo. NMFS F/NWC-30. 200 p.

Bakkala, R. G., and V. G. Wespestad. 1983. Walleye pollock. In R. G. Bakkala and L-L. Low (editors), Condition of groundfish resources of the eastern Bering Sea and Aleutian Islands Region in 1982. U. S. Dep. Commer., NOAA Tech. Memo. NMFS F/NWC-42, 187 p.

Coachman, L. K., and R. L. Charnell. 1979. On lateral mass interaction-a case study, Bristol Bay, Alaska. J. Phys. Oceanogr. 9:278-297. Geisser, S., and W. F. Eddy. 1979. A predictive approach to model selection. J. Am. Stat. Assoc. 74 (365):153-160.

Hughes, S.E. 1976. System for sampling large trawl catches of research vessels. J. Fish. Res. Board Can. 33:833-039.

MacDonald, P. D. M., and T. J. Pitcher. 1979. Age-groups from size-frequency data: A versatile and efficient method of analyzing distribution mixtures. J. Fish. Res. Board Can. 36: 987-1001.

Pereyra, W. T., J. E. Reeves, and R. G. Bakkala. 1976. Demersal fish and shellfish resources of the eastern Bering Sea in the baseline year 1975. Processed Rep., 619 p. Northwest and Alaska Fish. Cent., Natl. Mar. Fish. Serv., NOAA, 2725 Montlake Blvd. E., Seattle, WA 98112.

Quast, J. C., and E. L. Hall. 1972. List of fishes of Alaska and adjacent waters with a guide to some of their literature. U.S. Dep. Commer., NOAA, Tech. Rep. NMFS SSRF 658, 47 p.

Robins, C. R. (chairman). 1980. A list of common and scientific names of fishes from the United States and Canada. Am. Fish. Soc., Spec. Publ. No. 12, 174 p.

Traynor, J. J., and M. O. Nelson. 1983. Results of the U.S. hydroacoustic survey of pollock on the continental shelf and slope. In R. G. Bakkala and K. Wakabayashi (editors), Results of cooperative U.S.-Japan investigations in the Bering Sea during May-August 1979 p. 305-320. Unpubl. manuscr. Northwest and Alaska Fish. Cent., Natl. Mar. Fish. Serv., NOAA, 2725 Montlake Blvd. E., Seattle, WA 98112.

Wakabayashi, K., R. G. Bakkala, and M. S. Alton. 1983. Methods of the U.S.-Japan demersal trawl surveys. In R. G. Bakkala and K. Wakabayashi (editors), Results of cooperative U.S.-Japan investigations in the Bering Sea during May-August 1979. p. 4-49. Unpubl. manuscr. Northwest and Alaska Fish. Cent., Natl. Mar. Fish. Serv., NOAA, 2725 Montlake Blvd. E., Seattle, WA 98112.

THIS PAGE INTENTIONALLY LEFT BLANK

```
Appendix A
Station and Catch Data, 1980 U.S. Bering Sea Trawl Survey
```

Appendix A contains computer listings of station and catch data for all successfully completed stations used in the analysis of 1980 Bering Sea survey data. Missing haul numbers indicate unsatisfactory tows.

Latitudes and longitudes are in degrees, minutes, and tenths of minutes. Gear depths are in meters. Duration of tow is in tenths of hours. Distance fished in tenths of kilometers. A performance code of 0 indicates a satisfactory tow. Gear code 20 represents the 400 Eastern trawl. Catch weights are in kilograms.

```
List of Tables
```

Table
Page

A-1. Station and catch data for the NOAA ship Oregon 88

A-2. Station and catch data for the chartered vessel Ocean Harvester 98

Table A-1.--Station and catch data for the NOAA ship Oregon.

haul ${ }^{\text {a }}$	1	2	3	4	5	6	7	8	9	10	11
HIONIH/DAY/YFAR	5/22/60	5/22/80	5/22/80	5122/80	5/23/80	5/23/80	5/23/80	5/23/80	5124/80	5/24/80	5/24/80
LATIJUDE SIART	550.0	$55 \quad 20.1$	5540.6	560.2	5619.7	5640.0	570.4	57 20.3	5739.7	5759.4	5820.1
LONGITUDE STARI	16620.1	$166 \quad 20.2$	16622.2	16624.2	16626.6	16626.0	16628.4	16628.5	16629.9	16630.7	16633.2
LATITUDE END	550.0	$55 \quad 20.1$	5540.5	5559.9	5620.2	56 41.3	5659.4	5719.1	5740.9	580.6	5821.3
LCNGITUDE END	16620.1	16620.2	16624.5	16526.7	16624.8	16626.7	16628.4	15628.1	16629.8	16631.0	16634.3
LORAN STARI	34739.70	34703.10	34660.40	34610.80	34551.30	34464.50	34368.30	34247.60	34114.90	33959.90	33785.00
LORAN STARI	48476.50	48516.40	48563.30	48605.50	48643.30	48652.20	48668.00	48653.80	48634.40	48598.00	48557.90
LCEAN END			34666.80	34619.30	34543.80	34460.70	34373.80	34254.40	34105-60	33950.90	33776-20
LORAN END			48577.00	48621.10	48631.90	48656.90	48668.20	48652.50	48631-70	48597-10	48560-50
GEAR DEPTH	135	128	123	119	101	82	71	68	64	59	46
DURAIICA IN HOURS	0.50	0.50	0.50	0.50	0.50	C-50	0.50	0.50	0. 50	0.50	0.50
DISIANCE FISHED	2.04	1.85	2.37	2.72	2.0)	2.44	1.87	2.33	2.22	2.20	2.56
Performance / gear	$0 / 20$	$0 / 20$	0 / 20	$0 / 20$	$0 / 20$	$0 / 20$	0/20	$0 / 20$	$0 / 20$	0 / 20	$0 / 20$
POLLOCK	17.2	9.5	29.5	1.4	7.7	35.2	210.A	6.4	9.1	6.8	8.2
PAC COD	113.4	12.2	29.9	12.7	2.7	11.1	68.0	87.5	155.1	150.1	17-2
PaC OC PERCH	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	C. C
CTHEF RCKFISH	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	- $\mathbf{C . 0}$
SABLEFISH	9.1	0.0	0.9	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
PAC HERAING	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.1
AIKA MaCKEfEL	0.0	0.0	0.0	0.0	0.0	0.2	0.0	0.0	0.0	0.0	0.0
SCULPINS	13.1	0.2	0.7	2.1	4.1	0.9	10.0	0.7	1.6	37.2	22.6
EELPOUTS	52.7	16.9	98.0	31.8	18.6	6.9	26.8	39.5	10.4	9.1	20.5
OTHER RNDFISH	0.3	1.1	1.8	2.3	0.5	0.2	2.0	0.6	0.1	3.8	1.2
TOT RCUNDFISH	205.8	39.9	169.8	50.1	33.0	54.5	317.6	134.6	176.3	207.1	65.8
Yellow scle	0.0	0.0	0.0	0.0	4.5	34.5	465.8	450.0	222.3	210.9	261.3
ROCK SOLE	0.0	0.0	0.0	0.0	0.0	12.7	20.0	0.0	9.1	3.2	22.7
'flathead stle	25.9	21.8	42.6	19.1	8.2	5.4	34.9	0.6	1.4	0.1	0.1
ala Sma plaice	0.0	0.0	0.0	0.0	0.0	11.3	13.6	101.6	73.5	223.2	81.2
GREENLAND IBI	7.7	3.2	0.5	1.4	0.9	0.2	1. B	1.8	0.2	2.3	0.9
ARROHTOOJH FL	18.6	6.4	4.5	5.4	2.7	1.8	0.0	0.0	0.0	0.0	C. 0
PaC haligut	24.0	4.1	0.0	0.0	1.0	2.0	2.2	3.3	0.9	2.0	C. 0
OTHER FLJFISH	1.9	0.1	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	24.3
TOT FLAIFISH	78.1	35.5	47.7	25.9	17.4	67.9	538.4	565.3	307.3	441.7	390.4
SKA IES	6.8	0.0	47.2	111.6	64.0	42.2	30.4	8.6	13.6	0.0	0.0
ICI ELASMOERH	6.8	0.0	47.2	111.6	64.0	42.2	30.4	8.6	13.6	0.0	0.0
FED KING CfiAB	0.0	0.0	0.0	0.0	0.0	2.5	0.0	0.0	0.0	0.0	1.4
GLUE KING CRAB	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	C. 0
JANAER. BAIRDI	147.4	27.7	16.8	4.1	1-8	$1-0$	0.2	2.3	2.3	0.9	C. 0
JANNER. OPILIO	3.4	4.8	14.5	3.6	41.3	18.8	11.4	13.6	31.3	82.1	155.1
TANNER. HYBRID	0.5	0.0	0.2	0.0	1.4	0.0	0.0	0.5	0.0	3.6	1.4
DIAER CRAO	0.0	0.0	0.0	0.0	13.6	27.4	8.6	25.9	29.3	20.4	27.5
SNAILS	0.0	0.0	0.5	0.0	34.2	112.9	23.4	42.2	27.0	36.7	17.5
SHFIHP	0.1	0.1	0.2	0.1	0.2	0.0	0.0	0.0	0.0	0.0	0.1
STAFFISH	0.0	0.0	0.1	0.2	0.2	59.0	109.3	34.5	34.9	12.2	52.2
SQUIO	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	C. 0
OCIOPUS	22.2	0.0	27.2	0.0	0.0	0.1	0.0	0.0	0.0	0.0	C. 0
diher invefts	1.8	0.9	0.5	1.1	0.2	0.0	15.9	20.5	0.1	0.6	0.5
IOIAL INVERTS	175.4	33.4	60.0	9.2	92-9	221.6	168.8	139.4	124.8	156.6	255.6
OTHER	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.0	0.0
TOJAL CAICH	466.1	108.8	315.7	196.8	207.8	386.2	1055.3	847.8	622.0	805.4	715.8

Table A-l.--Station and catch data for the NOAA ship Oregon (cont'd).

HAUL	12	13	14	15	16	17	18	19	20	21	23
MONIH/DAY/YEAR	5/25/80	$5 / 26 / 80$	5/26/80	5/26/80	5/26/80	5/27180	5/27180	5/27180	5/27/80	5/27/80	5/28/80
LAIIJUDE START	5819.4	580.1	5739.6	5719.8	$57 \quad 0.0$	5640.0	5620.1	560.5	5540.3	55 40.0	5541.3
LDNGITUDE STARI	16516.2	16514.1	16515.0	16514.4	16513.4	16513.5	16512.1	15511.2	1659.6	16435.9	16359.6
LAIITUDE END	5819.6	58 0.9	5740.6	57 21.0	571.4	5641.0	$\begin{array}{lll}56 & 19.1\end{array}$	5559.2	55 41-4	5540.2	5540.2
LONGITUCE END	16518.3	16516.1	16516.6	16515.3	16512.7	16512.0	16511.7	15514.9	1658.1	16433.1	16359.7
LORAN START	33575.80	33730.10	33885.00	34016.50	34131.40	34326.30	34322.90	34396.70	34459.90	34367.60	34263.80
LGRAN SIARI	48087.40	48105.00	48141.70	48159.60	48164.80	48168.60	48155-10	48137.10	48108.80	47893.70	47661-20
LOFAN EKD	33580.10	33729.10	33882.40	34011.80	34121-90	34226.90	34325.40	34403.30	34452.00	34359.20	34267.90
LORAN END	48094.70	48116.50	48151.00	48164.50	48160.20	48159.00	4E151-60	48140.60	48100.10	47876-10	47661-20
GEAR DEPIH	42	48	60	64	63	73	84	93	106	93	91
DURATION IN HEURS	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50
DISTANCE FISHED	2.19	2.56	2.52	2.33	2.59	2.41	1.80	2.48	2.69	2.94	2.06
PERFORMANCE / GEAR	c / 20	$0 / 20$	0 1 20	$0 / 20$	$0 / 20$	0/20	$0 / 20$	0/20	0120	0120	$0 / 20$
POLLOCK	0.1	0.4	2.7	2.3	0.1	2.4	84.4	34.5	89.8	78.0	7.3
PAC CCD	0.1	0.4	10.6	83.9	18.1	0.7	38.6	26.3	33.6	47.2	2.3
PAC OC PERCH	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
DTHER fiCkfish	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	c. 0
SABLEFISH	C. 0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
PaC Herring	2.7	0.0	C. 0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
atka Mackerel	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	C. 0
SCULPINS	12.2	3.8	0.9	0.0	0.0	0.0	0.1	0.0	1.4	0.3	0.0
EELPOUTS	1.0	2.4	0.3	4.5	2.3	5.6	9.6	8.2	48.1	4.1	0.1
QTHER RNDFISH	0.9	1.1	0.0	0.1	0.1	0.0	0.2	0.1	0.0	0.2	0.4
TOI RCUNEFISH	17.0.	3.0	14.6	90.8	20.6	8.7	132.8	69.0	172.8	129.8	1 C .0
YELLOH SOLE	171.5	165.1	121.5	382.8	552.5	174.2	106.1	18.4	1.4	5.9	24.9
ROCK SOLE	1.0	9.1	5.5	0.9	15.4	0.0	4.5	0.3	0.0	2.7	23.6
FLA THEAD SCLE	0.1	0.0	0.1	0.7	2.0	3.3	10.4	3.4	5.4	2.3	1.8
ALASKA PLAICE	70.3	85.3	37.6	43.1	16.3	14.5	20.4	0.0	0.0	0.0	0.5
GREENLAND TBT	0.0	0.2	0.4	0.1	0.0	0.4	0.5	0.0	0.6	0.5	C. 0
ARROHTODIH FL	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.9	8.6	10.4	1.4
Pac halibui	0.0	0.0	0.0	0.0	0.0	0.0	0.6	0.0	0.0	8.1	2.4
OTHER FLIFISH	0.9	10.0	0.0	0.0	0.0	0.0	0.0	0.1	0.2	0.2	0.1
TOT FLAIFISH	244.6	269.7	165.1	427.6	586.2	192.4	142.8	23.1	16.2	30.1	54.7
SKA1ES	0.0	0.0	0.5	0.0	4.5	0.0	3.6	0.0	9.1	0.0	13.6
IOI ELASMCERH	0.0	0.0	0.5	0.0	4.5	0.0	3.6	0.0	9.1	0.0	13.6
RED KING CRAB	6.4	0.0	6.4	0.0	21.8	215.0	2.9	0.0	0.0	7.0	3.2
HLUE KING CRAB	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	C. 0
IANAER, BAIRDI	0.0	1.8	2.7	10.0	0.7	3.4	0.5	2.7	13.6	51.3	5.9
TANNER, OPILIO	120.7	32.0	33.1	68.6	6.4	15.0	18.1	10.9	7.3	18.6	5.0
IANNER, HYERID	0.9	0.2	0.0	4.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0
CTHER CKAB	20.0	3.6	19.1	3.3	0.9	22.3	19.3	14.6	0.9	56.2	9.5
SNAILS	18.1	51.0	12.0	15.4	1.9	45.9	256.7	40.4	2.4	13.2	2.7
SHR IMP	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.2	0.0	C. 0
STAFFISH	51.3	0.0	39.0	0.0	31.8	42.6	26.3	0.0	0.0	0.0	0.0
SQUID	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	C. 0
OCICPUS	0.0	0.0	0.0	0.0	0.0	0.3	0.4	0.0	0.0	0.0	0.5
Other inveris	0.0	86.2	0.0	0.0	0.0	0.1	0.5	0.0	0.0	0.1	2.4
TOTAL INVERTS	217.3	174.8	112.2	101.8	63.2	344.6	324.7	68.6	24.3	146.4	29.1
OTHER	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	Cos
TOTAL CATCH	478.9	452.5	292.4	620.3	674.6	545.7	603.9	160.7	222.5	306.3	107-4

Table A-l. --Station and catch data for the NOAA ship Oregon (cont'd).

HaUl	24	25	25	27	23	29	30	31	32	33	4
MONTH/DAY/YEAR	5/20/E0	5/28/80	5/28/8C	5/28/80	5/29/80	5/29/80	5/29/80	5/29/80	5/30/80	5/30/8C	5/30/80
LAIITUDE STARI	5559.4	5620.0	5640.1	570.0	5719.7	5739.3	580.1	5820.1	5820.3	580.6	5740.6
I ONGIIUDE SIART	16359.7	1640.6	1640.1	1640.0	1640.4	16359.4	1640.8	1640.2	16243.5	16244.8	16244.9
LATITUDE END	560.5	5621.1	5641.4	57.1 .0	5721.0	5740.5	581.0	5821.4	5820.5	5759.6	5739.2
LONGITUDE END	16359.6	1641.5	1640.5	1540.0	1640.4	16359.4	$164 \quad 0.3$	1640.9	16241.4	16244.6	16244.6
LORAN START	34191.60	34114.40	34018.50	33912.80	33796.60	33668.90	33526.60	33372.10	33181.30	33326.40	33461.20
LCRAN START	47670.20	47681.50	47678.50	47672.50	47665.00	47644.00	47629.20	47598.30	47107.00	47132.6C	47147.30
LORAN EAO	34192.80	34112.00	34013.00	33904.60	33790.30	33659.40	33518.30	. 33364 -10	33174.50	33332.90	35469.50
LOFAN END	47670.20	47687.50	47681.20	47672.10	47664.00	47647.80	47624.70	47601.30	47093.80	47132.2C	47146.80
GEAR DEPIH	ε	82	73	66	60	49	44	38	29	38	42
UURAIICN IN HOURS	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50
DISTANCE FISIAEO	2.19	2.32	2.54	1.85	2. 43	2.22	1.81	2.44	2.04	1.85	2.54
PERFORMANCE / GEAR	$0 / 20$	$0 / 20$	$0 / 20$	$0 / 20$	$0 / 20$	0120	$0 / 20$	$0 / 20$	$0 / 20$	$0 / 20$	$0 / 20$
POLLOCN	15.9	24.9	11.3	12.7	1.3	1.4	0.1	0.1	0.0	0.1	0.1
PAC COD	10.0	24.0	21.8	36.7	27.2	4.5	5.4	2.5	0.0	1.4	2.5
PAC DC FERCH	C. 0	0.0	0.0	0.0	0.0	C .0	0.0	0.0	0.0	0.0	C. 0
OTHER RCKFISH	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	C. 0
SABLEFISH	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
PAC HERFING	C. 0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	C. 0
ATKA MaCKEREL	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	C. 0
SCULPINS	0.0	0.0	1.0	0.2	0.0	6.0	9.7	4.0	23.1	6.9	0.9
EELFOUTS	1.0	3.6	3-6	1.4	0.0	0.0	0.0	0.0	1.4	0.0	0.0
OIHER RNDFISH	0.0	0.1	0.1	0.0	0.1	0.8	2.1	4.6	26.0	4.8	1.3
TOI ROUNDFISH	26.5	52.7	37.9	51.0	29.1	12.7	17.4	11.3	50.4	13.3	4.8
YELLOH SOLE	39.0	48.5	176.4	263.5	107.5	262.6	214.1	448.5	1031.9	899.5	258.1
ROCK SCLE	42.6	3.2	3.2	0.9	0.1	18.1	22.7	11.6	160.6	15.4	24.0
FLATHEAD SOLE	1.4	2.3	18.6	5.9	1.4	0.5	0.1	0.0	0.0	0.0	3.2
ALASKA PLAICE	0.5	4.5	62.1	68.0	24.0	61.7	17.2	51.3	89.4	75.7	28.1
GREENLAND IGI	0.0	1.4	0.9	0.9	0.2	0.2	0.3	0.0	0.0	0.0	0.1
ARRCHIOSTH FL.	9.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
PAC HALIBUI	4.2	0.0	0.0	0.0	0.0	0.4	0.4	0.0	2.0	4.9	6.4
OIHER FLTfish	0.3	0.0	0.1	0.0	0.0	5.9	6.4	0.5	21.3	31.3	41.7
IOT FLATFISH	57.0	59.9	261.4	339.3	133.2	349.4	261.1	511.9	1305.2	1026.8	361.7
SKAIES	5.4	0.2	0.0	0.0	1.3	0.0	0.0	0.0	0.0	0.0	C. 0
IOI ELASMOURH	5.4	0.2	0.0	0.0	1.3	0.0	0.0	0.0	0.0	0.0	0.0
RED KINE CRAB	0.7	13.2	121.6	176.2	63.5	10.4	15.0	0.0	2.3	21.3	38.1
BLUE KING CRAB	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
TANNER. BAIRDI	31.3	3.6	9.1	6.8	3.6	5.4	1.4	0.1	0.0	0.0	4.1
IANNEF. CPILIO	11.8	10.0	26.8	8.2	3.2	21.3	15.4	0.3	0.0	0.0	0.2
TANKER. HYARID	0.0	1.4	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.0	C. 0
UTHER CRAB	60.9	4.5	11.0	55.2	39.5	27.9	24.1	3.6	2.0	2.9	3.2
SNAILS	31.1	9.3	29.1	41.0	23.1	25.1	42.4	4.3	0.0	1.0	11.1
SHRIMP	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
STAFFISH	0.0	0.0	0.5	0.0	0.0	117.0	111.1	30.8	258.1	381.9	53.5
SQUIO	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	C. 0
cCiopus	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
OIHER INYERIS	0.9	4.7	C. 0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.9
TOIAL INVERIS	136.7	46.7	$1+7.9$	287.4	132.9	207.2	209.6	47.1	262.4	407.2	111.2
OTHER	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	C. 0
TOIAL CATCH	266.0	159.5	457.2	677.8	297-0	569.3	488.1	570.3	1618.0	1447.3	477.7

Table A-I. --Station and catch data for the NOAA ship Oregon (cont'd).

HAUL*	35	36	37	38	30	40	41	42	43	44	45
MDNIH/DAY/YEAR	5/30/60	5/30/30	$5131 / 80$	$5 / 31 / 80$	5/31/80	$5 / 31 / 00$	5/31/80	$6 / 1 / 80$	6/5180	6/5/80	6/6/80
LAJIJUDE SIARI	5720.1	57 0.5	5640.2	5620.5	$56 \quad 0.5$	5539.9	5540.4	5520.1	5540.2	5560.0	562 C 0
LONGITUCE SIAFT	16246.4	16247.2	16247.3	16247.9	16249.2	16250.5	16323.8	16325.2	16810.9	16813.4	16815.7
LAIITUDE END	5718.6	$56 \quad 59.2$	5641.5	5819.5	5559.3	5540.7	5540.9	5521.2	5540.9	561.2	5620.1
LONGITUDE ENU	1624 E.6	16247.2	16247.4	16247.7	16249.5	16251.8	16325.5	16326.2	1689.4	16812.5	16813.6
LORAN Start	33593.50	$337 \mathrm{C7} 90$	33815.30	33910.80	34001.00	34084.60	34170.90	34243.10	34941.90	34919.50	34885.70
LOFAN START	47169.90	47184.00	47190.90	47198.30	47207.30	47214.00	47430.00	47429.80	49197.90	49269.90	49335.30
LORAN END	33602.60	33715.30	33002.80	33914.80	34006.70	34085.10	34175.40	34241.80	34937.40	34915.20	34879.10
LORAN. END	47172.20	47184.80	47191.20	47197.00	47209.10	47222.20	47440.80	41437.50	49192.00	49268.50	49322.60
GEAR DEPIH	46	57	70	11	17	49	. 77	51	132	144	150
DURAIICN IN HOURS	0. 50	0.50	0.50	0.50	0.50	C. 50	0.50	0.50	0.50	0.50	0.50
DISTANCE FISHED	2.65	2.46	2.50	1.87	2.26	1-91	1.98	2.30	2.17	2.46	2.22
PERFORMance / Gear	0 120	0120	$0 / 20$	0120	$0 / 20$	- $1 / 20$	$0 / 20$	0 120	0/20	$0 / 20$	$0 / 20$
POLLCCK	2.3	0.0	6.4	10.9	209.6	584.2	94.3	20.0	7.0	5.4	0.0
PAC COD	7-7	15.4	4-5	13.2	12.7	128.8	13.2	14.1	172.1	91.9	69.9
PAC OC PERCH	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
CTHER RCKFISH	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	C. 0
SABLEFISH	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	10.9	1.8	0.0
PAC HERRING	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
AtKa Mackerel	0.0	0.0	0.0	0.0	0.3	0.0	0.0	0.0	0.0	0.0	0.0
SCULPINS	1.5	0.0	0.0	1.4	0.2	3.9	0.9	1.1	4.4	0.9	4.5
EELFOUTS	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.1	10.7	5.4
CTHER FNCFISH	0.7	0.0	0.3	0.0	0.4	0.8	0.1	0.2	0.2	1.6	2.6
JOI RUUNOFISH	12.1	15.4	11.2	25.4	222.9	717.7	108.5	35.5	195.8	112.2	82.4
YELLOW SOLE	234.1	243.6	151.5	95.3	100.2	124.3	255.8	194.6	0.0	0.0	. 0.0
ROCR SOLE	93.2	15.0	2.7	7.3	18.1	105.7	44.5	24.0.	0.0	1.1	1.3
FLATHEAD SOLE	17.0	2.7	4.5	5.9	22.7	9.1	24.9	49.0 .	10.4	1.8	0.5
alaska plaice	68.9	13.6	10.4	26.3	61.2	6.8	10.4	30.8	0.0	0.0	0.0
GREENLAND TBI	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	7.0	0.9	C. 0
AREOHTOOTH FL	0.0	0.0	0.0	1.1	5.9	0.1	7.7	0.9	17.9	43.8	20.1
PAC HALIBLI	47.3	1.5	9.3	0.0	7.3	4.0	7.3	4.2	0.0	0.5	4.3
OTHER FLIFISH	47.6	0.0	0.0	0.0	0.1	34.9	0.1	3.3	0.7	0.5	0.0
IOI FLAIFISH	508.3	276.4	178.5	135.9	216.1	284.9	350.8	296.9	36.1	48.6	26.2
SKAIES	0.0	0.2	0.5	1.1	3.2	0.0	6.4	1.8	30.8	56.7	18.5
IOI EL A SMOBRH	0.0	0.2	0.5	1.1	3.2	0.0	6.4	1-8	30.8	56.7	18.5
FED KING CRAB	340.6	62.6	12.0	4.8	24.5	120.7	16.8	26.3	0.0	0.0	0.0
BLUE KING CRAB	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	C. 0
TANAER. BAIRDI	9.8	11.8	11.8	20.0	37.2	9.1	158.8	150.1	34.7	25.9	235.5
IANNLR, CPILIO	0.3	0.2	4.1	2.3	5.0	0.7	0.2	0.1	0.1	0.0	60.3
TANAER - HYBRID	0.0	0.0	0.0	0.0	0.0	0.0	C. 0	0.0	0.0	0.0	0.0
DTHER CRAB	2.3	2.0	4.4	0.8	3.7	1.8	24.1	2.1	0.3	2.1	0.2
SNAILS	29.5	3.6	2.4	0.2	0.7	0.3	20.7	0.2	2.1	0.2	1.9
SHR [MP	0.0	0.0	0.0	0.0	0.0	0.0	C. 0	0.0	0.1	0.3	0.0
S JARFISH	30.4	0.0	2.8	0.0	0.2	13.2	7.3	0.0	293.8	2.7	0.3
SOUID	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	C. 0
OCIOPUS	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	6.6	0.0
OIHER INYERIS	0.5	0.1	78.5	0.0	0.1	0.0	0.0	0.1	13.8	28.6	C. 0
TOIAL INVERTS	413.7	80.4	114.9	28.0	71.3	145.7	227.9	179.0	345.0	66.5	302.2
OTHER	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
COJAL CAICH	934.1	372.4	305.1	190.4	513.6	1148.2	693.6	513.1	607.7	284.0	429.3

Table A-1.--Station and catch data for the NOAA ship Oregon (cont'd).

hauls	46	49	50	51	52	54	55	56	57	59	60
MONTH/DAY/YEAR	6/6/80	618180	$6 / 8 / 80$	6/9/80	6/10/80	6/10/80	6/10/80	6/11/80	6/11/30	6/11/80	6/13/80
LATITUDE STARI	5620.3	5710.2	5720.0	5659.2	5639.4	56 49.9	5710.1	5729.3	5740.1	5740.4	5715.9
longitude start	16850.1	16913.8	16936.4	16933.5	16930.0	16954.7	16953.7	15959.2	16939.8	17016.1	17012.8
LATITUDE END	5621.4	5111.3	5720.9	$57 \quad 0.1$	5638.4	5650.2	$57 \quad 9.5$	5730.3	5740.9	5740.5	5720.2
LGNGITUCE END	16848.8	16920.3	16937.5	16933.5	16923.1	16957.1	16951.9	16958.8	16938.0	17013.4	17013.6
LORAN SJART	34982.30	34914.70	34905.30	35024.60	35058.60	35107.40	35048.90	10704.00	18697.50	18615.80	18713.60
LORAN START	49535.00	49803.40	49896.00	49899.40	49826.10	49995.30	50037.00	34870.40	34704.90	34754.8 C	35003.30
LOFAN END	34976.90	34913.60	34900.90	35021.70	35055.10	35112.30	35045.90	18701-20	18697-20	18623.70	18707.50
LORAN END	49535.20	49812.20	49899.80	49900.80	49812.30	50009.40	50025.70	34858.7C	34691.70	34751.30	35001-30
GEAR DEPIH	139	70	60	77	75	71	46	66	68	70	53
DURATICA IK HOUES	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50
DISTANCE FISHEU	2-54	2.48	2.07	1.54	2.76	2.56	2.17	1-18	2.28	2.74	1.85
PERFORMANCE/GEAR	$0 / 20$	$0 / 20$	$0 / 20$	$0 / 20$	0 / 20	0 / 20	$0 / 20$	$0 / 20$	0 / 20	$0 / 20$	0120
POLlock	2.3	26.8	7.7	0.0	23.8	22.5	0.0	23.6	203.2	138.8	1.4
PAC COD	148.1	18.1	131.8	51.3	130.5	0.0	33.1	44.9	88.9	15.0	22.7
PAC OC PERCH	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
CIHER FCKFISH	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	C. 0
SABLEFISH	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	C. 0
PAC HERSING	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
AIKA Mackerel	0.0	0.0	0.0	0.0	2.9	0.0	0.0	0.0	0.0	0.0	0.1
SCULPINS	6.4	45.4	143.8	181.7	502.3	43.1	10.9	48.5	16.6	19.1	2.8
EELPOUTS	0.0	0.2	0.0	0.0	0.0	0.0	0.0	0.0	2.9	1.4	C. 0
GTHER FNOFISH	0.1	0.8	0.0	0.2	3.2	0.1	24.9	0.4	0.3	0.1	0.8
TOT RGUNDFISH	156.8	91.3	283.3	233.1	663.2	65.7	68.9	117.4	311.9	174.3	27.7
YELLUN SOLE	0.0	66.9	34.2	146.1	47.9	25.6	86.0	47.4	30.4	- 33.1	5.4
ROCK SOLE	1.4	12.9	350.5	34.2	512.6	37.6	222.3	29.3:	4.8	14.1	132.9
fla ihead sole	8. 2	4. 8	0.0	1.6	1.1	10.9	0.0	1.1:	3.6	4.5.	0.7
alaska plaice	0.0	12.5	18.1	0.7	0.0	0.7	0.0	14.5	46.5	26.e	C. 0
GREENLANC IBI	0.0	0.2	0.0	0.0	0.0	0.0	0.0	2.5	7.5	6.4	0.0
ARRCWIOOIH FL	17.0	2.0	0.0	0.5	39.9	6.4	0.0	6.6	0.7	1-4	0.0
PAC HALIBUT	0.0	1.5	18.2	2.6	10.8	3.8	10.2	0.5	0.9	13.4	12.2
OTHER FLIFISH	0.1	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.0	0.0	0.0
TOT FLATFISH	26.6	100.8	421.2	185.7	612.3	85.1	318.4	101.9	94.3	99.6	151.2
SKAIES	9.3	0.9	0.0	0.0	0.0	3.9	1.8	3.6	2.3	14.5	3.4
ICT ELASMOERH	9.3	0.9	0.0	0.0	0.0	3.9	1.8	3.6	2.3	14.5	3.4
RED KING CRAB	C. 0	4.8	2.3	1.4	0.0	0.0	58.3	0.0	0.0	0.0	10.2
BLUE KING CRAB	0.0	15.9	33.3	3008.9	0.0	7.0	95.5	215.7	14.5	49.9	15.3
JAMAER EAIRDI	21.1	6.0	0.1	5.0	0.0	72.3	62.8	0.5	1-1	0.5	4.8
IANNER. DPILIO	34.2	40.8	349.3	103.9	0.0	72.8	24.3	107.3	13.6	15.2	0.5
TANNER HYBRID	0.0	0.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1
OTHER CFAS	0.3	0.0	5.0	55.6	0.7	5.4	67.1	37.2	1.0	3.5	32.7
SNAILS	0.1	0.0	0.0	0.0	0.5	7.0	0.0	0.0	3.0	4.2	C. 0
SHKIMP	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
STARFISH	1.3	1.4	75.1	431.8	7.9	2.3	106.9	15.6	241.5	138.6	46.9
SOUID	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	C. 0
DCIDPUS	0.0	0.0	0.0	0.0	17.2	0.0	0.0	0.0	0.0	0.0	0.0
OTHER INVEKIS	0.1	122.5	0.0	197.8	376.2	0.7	2.9	169.4	2.0	1.8	12.7
IGIAL INYERTS	57.3	191.5	465.0	3804.3	402.6	167.6	417.9	545.7	276.9	213.6	127.1
OTHER	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
IOTAL CATCH	250.0	384.5	1169.5	4223.1	1678.2	322.2	807.0	768.6	685.4	502.0	305.5

Table A-1.--Station and catch data for the NOAA ship Oregon (cont'd).

HAUL	61	62	63	64	65	67	68	69	70	71	72
HONTH/DAY/YEAR	6/13/80	6/13/80	6/13/80	6/14/80	6/14/80	6/15/80	6/16/80	6/16/80	6/16/80	6/16/80	6/17/80
LATIJUDE STARI	5729.9	5740.0	5750.1	5739.3	5729.6	5659.5	5719.8	5720.2	5710.3	5660.0	5650.0
LONGITUDE START	17034.5	17054.5	17116.1	17132.2	17111.0	17010.2	17050.1	17129.3	17110.6	17047.0	17028.6
LAIIIUDE END	5729.6	57 39.6	5750.1	5740.6	5730.7	570.0	5720.2	5720.2	5710.2	5659.9	5650.6
LONGITUDE ENO	17036.8	17052.7	17114.0	17133.1	17112.0	$170 \quad 12.6$	17051.8	17126.8	171 B.4	17045.0	17030.6
LOKAN START	18595.30	18457.10	18320.80	18252.60	18388.00	18686.30	18524.30	18278.10	18387.50	18507.90	18544.50
LORAN SIART	34380.10	34744.20	34605.70	34690.70	34824.90	35132.50	34960.80	34863.50	34979.90	35091-70	35135.70
LORAN ENO	18575.30	18467.20	18331.90	18245.90	18380.90	12684.60	18513.40	18293.80	18401.80	18519.6 C	18539.70
LORAN END	34880.90	34750.90	34609.10	34676.30	34812.30	35135.40	34952.70	34869.50	34986.60	35096.60	35134.10
gear oepih	75	82	90	97	91	68	80	99	77	91	99
DURATION IN HCURS	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50
DISIANCE FISHED	2.33	1.94	2-11	2.61	2.30	2.59	1.93	2.48	2.26	2.02	2.22
Performance / Gear	$0 / 20$	0120	$0 / 20$	$0 / 20$	0/20	0 / 20	$0 / 20$	0 / 20	$0 / 20$	$0 / 20$	$0 / 20$
POLLOCK	23.6	26.3	23.8	3.3	12.2	1.1	19.1	25.9	21.8	20.9	41.0
PAC CDD	46.9	46.5	29.9	32.0	11.3	10.4	20.9	31.3	37.9	6.8	11.3
PAC OC PERCH	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
OTHER RCKFISH	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
SABLEFISH	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.8	0.0	0.0
PAC HEFRING	C. 0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Atka macherel	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
SCULPINS	36.5	22.5	15.9	3.2	13.5	60.8	39.6	10.2	2.5	1.6	4.6
EELPOUIS	1.8	5.2	29.5	6.6	1.8	0.0	2.3	2.7	1.8	1-1	0.5
OTHER RNDFISH	0.1	0.1	0.2	0.0	0.2	0.3	0.2	0.1	0.0	3.1	1.0
TCT RCUNCFISH	109.0	100.6	99.3	45.0	39.1	72.6	81.9	60.2	65.8	33.5	58.4
YELIOh SOLE	23.6	5.7	1.1	6.8	1.8	36.5	9.1	0.1	1.6	1-1	0.0
HOCK SOLE	20.9	0.2	0.2	0.0	0.5	16.3	3.4	1.4	0.1	0.2	0.5
Flathead scle	8.2	4.3	3.2	3.6	2.0	4.1	2.3	11.3	15.6	61-2	22.5
alaska plaice	19.5	3.2	3.4	10.2	20.5	0.0	1.6	12.0	0.2	1.8	0.0
GREENLAND IBT	4.5	4.3	1.6	0.7	2.5	0.7	2.7	2.9	5.0	2.3	2.7
ARRCNTCOTH FL	0.2	0.9	0.0	0.0	0.9	1.4	0.1	1.4	2.0	2.3	4.8
Pac halituj	5.1	0.0	0.0	0.0	5.9	5.6	8.1	0.0	0.0	3.0	C. 0
DIHER FLIFISH	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1
TOT FLATFISH	82.0	19.6	9.5	21.3	34.1	64.5	27.3	29.1	44.6	71.9	30.5
SKAIES	2.5	6.6	26.8	50.6	3.6	0.0	8.6	34.0	34.5	14.1	16.3
TOT ELASMOBRH	2-5	6.6	26.8	50.6	3.6	0.0	8.6	34.0	34.5	14.1	16.3
RED KING CRAB	0.0	0.0	0.0	0.0	0.0	3.6	0.0	C. 0	0.0	0.0	0.0
BLUE KING CRAB	8.4	5.4	3.6	0.0	0.0	40.4	0.0	3.2	0.0	0.0	C. 0
TANSER. BAIRDI	0.7	0.1	0.1	3.2	0.2	176.7	5.0	3.4	10.7	22.7	44.2
TANNER. OPILIO	383.3	512.3	313.9	19.3	923.3	152.4	1102.2	195.5	84.8	36.7	10.0
TANNER. HYBRID	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
OTHER CRAB	4.5	0.2	1.4	2.4	0.0	55.3	0.0	0.0	0.0	0.0	0.0
SNAILS	0.0	102.3	73.8	49.9	94.6	8.6	15.4	22.7	10.0	11.3	$1 \mathrm{C}$.
SHRIMP	0.0	0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.5	0.1
STAFFISH	61.2	235.4	221.6	17.9	9.6	133.6	3.2	2.3	0.0	2.9	0.7
SQUID	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0-0	0.0	0.0	0.0
ccitapus	C. 0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.2
DTHER INVERIS	33.1	0.0	0.0	0.0	0.0	0.7	0.0	0.0	0.0	0.0	0.1
IOTAL INVEGTS	491.2	855.8	614.4	92.6	1027-7	571.3	1125.8	227.0	105.4	74.2	65.3
OTHER	0.0	0.0	0.0	0.0	$\therefore 0.0$	0.0	0.0	0.0	0.0	0.0	C. 0
TOTAL CAICH	684.7	931.5	750.0	203.5	1104.5	708.5	1243.6	350.4	250.2	193.7	170.5

Table A-1.--Station and catch data for the NOAA ship Oregon (cont'd).

haul	73	74	75	76	77	78	79	H0	82	83	84
MGNTH/DAY/YEAR	6/17/80	6/17/80	6/18/80	6/18/80	6/18/80	6/21/30	6/21/80	6/21/80	6/22/80	6/22/80	6/22/80
Latitude start	$57 \quad 0.1$	5640.2	5640.5	5630.9	5639.9	5619.1	5620.0	5620.2	5520.5	5520.2	5520.1
LCNGITUDE START	17123.0	17121.3	17044.5	17032.1	$170 \quad 7.7$	17041.1	1704.8	15928.5	1659.8	16434.5	1640.7
LAIITUDE END	570.7	5641.4	5639.5	5632.8	5640.9	5617.1	5620.2	5620.6	5520.3	5520.5	5519.8
LONGITUDE END	17124.8	17121.6	17045.0	17032.8	1707.0	17039.2	1702.8	16926.4	1657.6	16432.1	16358.7
LORAN STARI	18278.20	18195.00	18399.40	18385.20	18541.20	18259.30	18398.10	18484.80	18428.30	18447.70	18464.60
LORAN START	35002.00	35069.80	35126.90	351137.60	50006.70	5C007.90	49901.00	49743.50	48087.60	47867-40	47655.00
LORAN ENO	18269.00	18200.50	18390.60	18396.10	18550.90	14267.30	18404090	18491.00	18428.70	18450.10	18464.70
LORAN END	34995.10	35066.60	35127-10	35173.30	50008.33	50003.10	49894.10	49734.70	48073.30	47852.90	47642.40
GEAR DEPTH	106	115	110	112	95	117	106	143	106	101	75
DUEAJION IN HDURS	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50
OISTANCE FISHED	2.02	2.30	1.80	3.61	1.93	1.95	2.07	2.28	2.44	2.57	2. 13
PERFORMANCE / GEAR	$0 / 20$	$0 / 20$	$0 / 20$	$0 / 20$	$0 / 20$	0120	$0 / 20$	$0 / 20$	$0 / 20$	$0 / 20$	0120
POLLOCK	28.6	2.7	8.4	69.9	163.5	13.4	65.3	27.7	57.6	11.6	10.4
PAC COD	245.8	23.1	27.2	39.9	9.5	22.0	11.1	34.5	2.7	20.4	0.2
PAC CC PEFCH	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.2	0.0	0.0	C. 0
OTHER RCKFISH	0.0	0.0	0.0	0.0	0.0	0.0	0.0	21.9	0.0	0.0	C. 0
SABLEF1SH	2.7	0.9	0.0	0.7	0.0	0.0	0.0	0.0	590.1	0.0	0.0
PAC HEFFING	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
atka mackerel	C. 0	0.0	0.0	0.0	0.0	0.0	1.4	0.0	0.0	0.0	C. 0
SCULPINS	4.6	4.2	5.3	20.9	6.1	3.9	21.3	41.3	0.5	1.0	0.2
telfouis	0.7	1.8	6.4	10.0	0.9	0.5	3.6	0.0	14.7	3.2	0.0
OTHER RNDFISH	7-1	0.1	1.8	2.5	6.1	0.1	2.7	16.8	0.0	0.0	0.0
TOT ROUNDFISH	289.6	32.9	49.1	143.8	186.2	39.8	105.4	142-3	465.6	36.2	10.8
YELLDW SOLE	0.2	0.0	0.0	0.0	0.5	0.0	0.0	0.0	0.0	76.7	21.5
FOCK SOLE	0.1	0.0	0.0	0.0	0.0	0.0	0.5	0.0	0.5	42.4	12.2
FLATHEAD SCLE	9.5	4.3	3.6	24.9	17.0	10.4	29.0	0.5 ,	7.3	2.7	0.0
alaska platce	0.0	0.0	0.0	0.0	0.0	0.0	C. 0	C. 0_{5}	0.0	1.1	0.0
GREENLAND JBI	7.5	0.1	0.2	1.8	0.7	5.4	12.7	0.0	0.0	0.0	C. 0
ARROWICOJH FL	5.2	6.8	2.1	33.6	11.3	12.2	21.8	8.4	12.8	31.3	0.1
PaC HALI日UT	0.0	0.0	0.0	2.3	1.2	0.0	0.0	0.0	1-2	5.9	C. 0
OTHER FLIFISH	0.1	0.5	0.0	0.1	0.0	1.8	0.9	0.0	1.4	5.2	0.0
TOT FLATFISH	22.7	11.7	6.5	62.7	31-1	29.9	64.9	8.8	22.0	165.4	33.9
SKATES	22.7	17.5	22.0	46.3	25.9	8.5	29.9	107.8	39.7	0.0	0.0
TJT ELASMOBRH	22.7	17.5	22.0	46.3	25-9	8.5	29.9	107.8	39.7	0.0	0.0
RED KING CRAB	0.0	0.0	0.0	0.0	0.0	0.0	0.0	C. 0	1.1	58.5	5.7
BLUE KING CRAB	0.0	0.0	C. 0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
TANNER. BALRUI	37.4	83.7	38.7	62.4	61.2	241.1	32.7	3.2	7.9	31.1	0.5
TANNER. CPILIO	65.3	9.5	5.9	1.6	16.3	0.1	0.1	0.0	9.3	10.9	0.0
TANNER, HYBRID	0.0	0.0	0.0	C. 0	0.0	0.0	D. 0	0.0	0.0	0.0	0.0
Other Crab	0.4	0.4	0.1	0.3	0.0	0.2	0.0	0.1	0.0	0.4	2.0
SNAILS	5.4	13.0	0.5	0.5	1.1	3.8	0.0	0.3	0.3	0.4	0.0
SHHIMP	0.1	0.1	0.4	0.2	0.0	0.1	0.4	0.1	0.1	0.0	C. 0
STARFISH	0.0	1.4	14.1	21.1	1.5	178.7	20.9	1.0	0.4	0.0	0.0
SOUID	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
CCICPUS	0.0	0.0	0.0	0.0	0.0	64.0	12.0	28.1	0.0	0.0	0.0
OTHER INVERTS	0.0	0.0	0.3	0.0	0.0	0.5	0.0	0.1	0.0	0.0	2.7
IOTAL INVERIS	108.8	106.1	60.0	86.0	80.6	488.4	66.0	33.0	19.2	101.3	10.9
OTHER	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	C. 0
TOTAL CATCH	443.7	170.1	137.6	338.7	323.7	566.7	266.2	291.9	546.5	302.9	55.6

Table A-1.--Station and catch data for the NOAA ship Oregon (cont'd).

HAUL	86	87	88	90	91	92	93	94	95	97	98
MONIH/DAY/Y[AR	6/28/80	6/28/80	6/28/80	6/29/80	6/29/80	6/29180	6/30/80	5/30/80	6/50/80	6/30/60	6/30/80
LAIIIUCE SIARI	5659.8	5720.2	5740.4	$58 \quad 0.1$	5820.1	5840.3	5860.0	5919.6	5939.5	5940.0	5920.5
LONGITUDE STARI	17315.2	17320.1	17324.4	17328.5	17334.5	17416.3	17422.1	17427.1	17426.9	1756.5	1756.1
LAIITUDE ENO	571.0	5719.1	5719.5	580.1	5821.3	5839.9	590.5	5920.7	5940.7	59 40.0	5919.4
LONGIILDE END	17315.2	17320.1	17324.0	17331.1	17335.3	17414.5	17423.8	17427.0	17426.8	1754.4	1756.3
LORAN STARI	17548.20	17568.80	17573.20	17562.40	17530.30	17301.40	17269.10	17238.90	17230.00	17046.50	17048.60
LORAN START	34729.50	34600.00	34449.50	34284.60	34099.50	33856.10	33666.60	33474.40	33278.10	33246.40	33430.50
LORAN END	1/551.30	17566.40	17574.50	17547.30	17525.90	17310.70	17260.70	17238.60	17229.50	17056.60	17047.20
LORAN END	34723.30	34607.20	34456.90	34279.60	34087.20	33861.90	33659.80	33463.00	33266.00	33248.10	33440.00
GEAR DEPIH	137	117	143	112	110	152	124	117	112	121	128
DURATICN IN HOURS	0.50	0.50	0.50	0.60	0.50	C. 50	0.50	0.50	0.50	0.50	0.50
DISIANCE FISHED	2.15	2.09	1.69	2.54	2.39	1.83	1.85	2-19	2.26	2.04	1.96
PERFORMANCE / GEAR	$0 / 20$	$0 / 20$	0120	$0 / 20$	$0 / 20$	$0 / 20$	$0 / 20$	$0 / 20$	$0 / 20$	$0 / 20$	$0 / 20$
PCLLOCK	6.1	10.0	29.1	58.4	119.6	76.4	45.0	98.9	415.9	241.3	40.8
PAC COD	37.4	22.8	16.8	55.5	74.2	53.1	17.1	32.0	56.2	39.7	34.7
PAC OC PERCH	0.0	0.0	0.0	0.0	0.0	0.0	C. 0	C. 0	0.0	0.0	C. 0
DIHER RCKFISH	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
SABLEFISH	0.0	0.0	0.0	0.0	0.0	0.3	0.0	0.0	0.0	0.0	C. 0
PAC HEFFING	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
AIKA MACKEREL	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	C. 0
SCULPINS	12.6	17.8	6.5	28.6	11.4	1.9	4.7	6.1	11.3	5.4	4.4
EELFOUTS	4. 5	44.0	0.5	4.8	18.6	28.3	12.2	55.8	12.7	147.0	38.3
CIHER RNDFISH	1.1	0.3	0.3	0.2	0.8	2.7	0.5	0.0	0.0	0.6	0.3
IOT REUNDFISH	61.7	94.8	53.2	147.4	224.5	162.7	79.5	192.8	496.1	433.9	118.5
YELLOW SQLE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
ROCK SOLE	2.5	0.0	0.5	0.1	2.0	1.4	0.0	0.0	0.0	0.0	C. 0
flathead sole	7-7	24.9	1.4	4.8	7 -0	7.6	0.0	0.6	0.5	4.8	0.3
ALASKA PLAICE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
GREENLANO IBT	0.0	0.9	0.0	0.1	4.1	0.7	0.5	18.7	13.6	20.0	2.3
ARRCHTOOTH FL	16.3	10.0	31.5	31.5	2.0	30.7	0.0	0.0	0.1	0.0	2.5
PAC HALIBUI	0.0	0.0	0.0	0.0	0.0	0.0	3.1	1.7	0.0	1.3	1.6
OTHER FLIFISH	0.1	0.1	0.1	0.5	0.1	0.0	0.0	0.0	0.0	0.0	C. 0
IDI FLATFISH	2E. 6	35.9	33.4	37.0	15.3	40.3	3.6	21.0	14.2	26.0	6.7
SKA TES	12.2	7.2	37.9	34.0	7.6	12.0	12.9	64.4	10.6	15.9	1.8
IOI ELASMOBRH	12.2	7.2	37.9	34.0	7.6	12.0	12.9	64.4	10.6	15.9	1.8
red king crab	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	C. 0
BLUE KING CRAE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.9	0.0	0.0	0.0
IANNER. GAIRDI	95.7	135.2	179.2	100.7	138.8	168.7	6.4	0.4	0.1	0.0	1.6
JANNER, OPILIO	C. 0	0.9	0.2	8.8	8.2	4.3	29.9	43.1	3.4	23.5	10.4
TANAER, HYERIO	0.0	0.1	0.0	0.5	0.0	0.5	0.9	0.0	0.0	0.0	C. 1
UTHER CRAB	7.4	4.5	2.5	6.8	8.2	1.6	8.6	1.0	31.9	0.1	0.2
SNAILS	0.4	3.6	1.2	8.2	11.5	1.8	41.3	61.2	13.3	48.9	55.6
SHRIMP	0.1	0.1	0.0	0.1	0.1	0.0	1.7	3.0	3.2	6.1	1.4
STARFISH	0.0	0.6	0.2	0.1	1.1	0.0	1.5	4.1	8.8	24.9	4.3
SQuiu	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	C. 0
OCICPUS	23.8	6.8	0.0	0.0	0.0	0.0	C. 4	C. 0	0.0	0.7	0.3
DTHER LNVERTJ	0.0	0.1	0.2	0.0	0.2	0.3	1.5	1.3	0.6	1.0	0.4
IOIAL IAVERTS	127.4	152.0	183.5	125.2	168.1	177.2	92.1	115.0	61.2	105.2	74.3
OIHER	. 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	C. 0
TOTAL CATCH	228.0	289.9	308.0	343.6	415.6	392.2	188.1	393.2	582.0	581.0	201.3

Table A-1.--Station and catch data for the NOAA ship oregon (cont'd).

Table A-l. --Station and catch data for the NOAA ship Oregon (cont'd).

haul	124		125
MONIH/DAY/YEAR	$7 / 9 / 80$	71	9/80
LAIITUDE START	550.5	54	40.3
LCNGITUCE STARI	1659.0	165	9.3
LaIITUDE END	5459.3	54	38.6
LONGITUDE END	1659.9	165	9.6
LOFAN SIARI	49056.50		
LORAN SIARI	54564.20		
LORAN END	48060.00		
LOFAN END	34569.10		
GEAR DEPJH	109		82
DURAIION IN HQURS	0.50		0.50
DISTANCE FISAED	2.43		2.41
PERFORMANCE / GEAR	0120	0	120
Pollock	20.4		24.9
PAC COD	44.7		78.5
PAC OC PERCH	0.0		0.0
GTHER RCKFISH	0.0		0.0
SABLEFISH	0.0		0.0
PAC HERRING	0.0		0.0
AIKA Mackerel	0.0		0.0
SCULPINS	7.6		15.0
EELFOUTS	14.5		0.0
Cither fncFish	1.4		0.8
TDI ROUNDFISH	88.6		119.2
YELLOH SOLE	2.4		150.0
ROCK SOLE	21.8		10.9
FLA JHEAD SCle	57.6		7. 0
alaska plaice	0.0		0.0
GREENLAND TBT	0.0		0.0
ARROHTOLIH FL	38.6		17.4
PAC HALIBLJ	0.0		12.0
OTHER FLIFISH	8.4		7.9
IOI FLAJFISH	128.7		205.3
SKA IES	64.4		0.0
JOT ELASMOBRH	64.4		0.0
RED KING CRAB	0.0		0.0
glue king crab	0.0		0.0
IAAMER. EAIRDI	4.1		0.9
IANSER. CPILID	0.4		0.0
IANSER, HYBRID	0.0		0.0
CTHER CFAB	0.3		5.3
SNAILS	0.9		0.3
SHRIMP	0.0		0.0
STAEFISH	1.4		0.0
SOUID	0.0		0.0
OCIOPUS	12.7		5.2
OTHER INVERIS	0.0		0.0
ICIAL INVEFIS	19.7		11.7
OTHER	0.0		0.0
IDTAL CAICH	301.5		336.3

Table A-2.--Station and catch data for the chartered vessel Ocean Harvester.

haul	1	2	3	4	5	6	7	8	9	10	11
MQNIH/DAY/Yfar	5/12180	5/12/80	5/12/80	5/12/80	5/13/80	5/13/80	5/13/80	5/14180	5/14/80	5/14/80	5/14/80
LATITUDE SJART	5459.0	5519.2	55 39.8	5559.6	5620.1	5639.4	5659.4	5719.1	5738.4	580.9	58 2C.2
LONGITUOE SIART	16544.5	16546.5	16547.1	16546.1	$16547 . ?$	16549.3	16550.1	16550.7	16549.5	16557.1	16555.9
LATITUDE END	550.7	55 21.2	5541.3	561.3	5621.3	5638.0	5657.9	5718.5	5737.5	580.4	5820.6
LONGITUDE END	16544.7	16547.0	16545.7	16545.5	16547.1	16548.9	16550.9	16553.6	16552.4	166 0.4	16558.8
LORAIS SIART	18314.50	18398.00	18479.50	18551.90	18616.60	18668.10	18709.00	18735.90	18749.00	18748.20	18735.20
LOKAN START	34555.60	34616.80	34565.30	34501.20	34428.80	34350.30	34249.70	34133.90	33993.60	33847.80	33679.30
LCRAN END	18321.50	18405.60	18485.90	18557:90	18b<0.30	18664.70	18706.40	18735.50	18743.80	18748.20	18734.30
LORAN END	34652.70	34613.60	34557.20	34493.00	34423.70	34355.90	34260.60	34146.80	34013.60	33862.20	33684.60
GEAR DEPTH	130	121	119	108	93	79	75	70	64	57	42
DUFAIICA If HCUFS	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50
DISTANCE FISHED	3.09	3.67	3.11	3.22	2.22	2.69	2.93	3.11	3.32	3.48	2.93
PERFDRMANCE / GEAR	$0 / 20$	$0 / 20$	$0 / 20$	$0 / 20$	$0 / 20$	0 / 20	$0 / 20$	- / 20	0120	$0 / 20$	$0 / 20$
POLLDCK	47-6	89.6	74.4	37.2	134.7	51.7	123.4	26.3	7.7	5.7	C. 2
PAC COD	87.3	34.9	32.9	7.0	62.6	88.5	159.7	42.6	83.0	1.4	0.0
PAC DC PERCH	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
OTHER RCKFISH	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	C. 0
SABLEFISH	7.3	0.0	0.7	0.2	0.0	0.0	0.0	0.0	0.0	$0 \rightarrow 0$	0.0
PaC herring	0.0	0.0	0.0	0.0	1.4	0.2	19.1	0.2	0.5	0.1	0.5
atka mackerel	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.0
SCULPINS	0.5	11.1	0.1	0.6	0.0	11.3	0.5	4.0	13.8	45.2	26.0
EELPDUTS	0.2	4.8	22.1	18.8	4.5	12.5	10.2	23.1	8. 3	4.3	1.4
OTHER KNDFISH	0.2	8.6	0.3	0.8	0.3	0.2	0.1	0.5	1.9	0.9	3.6
TOT ROUNDFISH	143.1	149.0	131.1	64.6	203.6	164.4	312.9	96.7	115.2	57.6	34.6
yelloh sole	0.0	0.0	0.0	0.2	118.4	112.5	45.4	186.0	257.2	120.7	124.3
ROCK SOLE	0.2	0.2	0.2	0.0	12.9	25.4	12.2	15.4	9.1	4.1	0.2
FLATHEAD SOLE	7.3	99.3	34.9	8.2	10.0	17.7	6.4	0.9	0.7	0.0	0.0
alaska plaice	0.0	0.0	0.0	0.5	1.6	30.8	8.2	44.9	22.2	22.7 .	46.9
GREENLANS IBI	0.0	0.5	0.0	0.9	2.0	1.4	0.7	2.5	0.7	1.4	0.0
ARRCmTOCTH FL	64.9	25.4	9.5	4.1	0.1	0.0	0.0	0.0	0.0	$0 . \mathrm{C}$	C. 0
PaC halibut	10.4	36.1	11.3	1.0	1.7	4.1	6.8	0.9	0.0	0.5	0.0
OTHER FLIFISH	2.0	1.8	0.1	0.0	0.0	0.0	0.0	0.2	0.0	2.3	10.4
IOT FLAIFISH	84.8	163.3	56.1	14.9	146.7	191.9	79.7	250.8	289.8	151.5	181.9
SKATES	54.3	29.5	51.0	35.4	9.5	0.9	1.4	1.6	0.0	0.5	C. 0
TOI ELASMCERH	94.3	29.5	51.0	35.4	9.5	0.9	1.4	1.6	0.0	0.5	C. 0
RED KING CFAB	0.0	0.0	C. 0	1.8	8.2	13.6	3.2	0.0	0.0	0.0	0.0
ULUE KING CRAB	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
TANAER. BAIRDI	15.4	12.7	5.0	6.4	5.9	0.9	0.9	4-1	3.6	2.3	C. 0
IANNER. OPILIC	0.0	6.4	2.9	22.0	6.4	4.3	1.4	30.2	27.9	81.6	41.3
TANNER. HYBRID	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.9	0.9	2.7	0.2
OTHER CFAB	C. 0	0.0	0.0	0.0	14.4	0.0	0.0	0.0	48.8	47.7	16.6
SNAILS	0.1	0.0	1.1	11.6	79.0	19.5	7.3	9.3	24.0	15.2	4.5
SHEIMP	0.0	0.0	0.1	0.1	0.0	0.0	0.0	0.0	0.0	0.1	0.1
STAFFISH	0.0	0.0	0.0	0.0	0.9	9.5	9.1	11.8	26.3	9.5	4.5
SQuid	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
UCICPUS	12.2	7.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	C. 0
Other inverts	0.2	0.0	0.0	0.0	0.2	0.1	0.0	0.0	0.0	5.2	C. 0
IOIAL INVEHTS	28.0	26.8	9.2	41.9	115.8	48.0	21.8	56.2	131.5	164.4	67.2
OTHER	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
IOJAL CAJCH	350.2	368.5	247.3	156.7	475.6	405.2	415.7	405.3	536.5	373.9	280.7

Table A-2.--Station and catch data for the chartered vessel Ocean Harvester (cont'd).

haul *	12	13	14	15	16	17	18	19	20	21	22
MONTH/DAY/YEAR	5/15/80	5/15/80	5/15/80	5/15/80	5/15/80	5/15/80	5/16/80	5/16/80	5/16/80	5/16/80	5/18/80
LAIIIUDE SIARI	5820.8	584.1	5739.7	5719.4	5659.7	5639.4	5621.0	561.4	560.2	5619.9	560.2
LONGITUDE STAFT	16436.5	16446.6	16437.0	164 32.6	16431.7	16431.5	16430.3	16433.3	16324.4	16323.5	16214.1
LaIITUDE END	5819.4	53 4.4	57 37.8	5717.2	5659.7	56 39.0	5619.4	562.0	561.9	5618.5	561.8
LONGITUDE END	16436.5	16449.1	16437.5	16435.4	16428.6	16428.2	16429.9	16431.2	16324.4	16321.6	16213.2
LCRAN START	18744.90	18750.50	33771.50	18731.70	18707.10	18671.50	18631.10	34284.50	34097.00	34010.80	33910.20
LORAN STARI	33460.60	33616.90	47892-00	33894.30	34007-30	34113.50	34195.20	47891.20	47458.70	47434.80	46976.40
LCRAN END	18745.60	12750.50	33788.00	18729.60	18707.00	18670.90	18627.20	34276.10	34090.50	34011.90	33901.10
LORAN END	33472.00	33626.40	47895.00,	33915.40	33998.20	34105.50	34201.10	47877-40	47459.60	$47422-50$	46970.50
GEAR DEPIH	44	46	53	66	63	75	66	91	88	88	71
DURAIION IN HOURS	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50
DISTANCE FISHED	2.59	2.56	3.54	4.80	3.15	3.48	3.06	2.50	3.09	3-20	3.17
PEFFORHANCE / GEAR	$0 / 20$	$0 / 20$	$0 / 20$	$0 / 20$	$0 / 20$	0/20	$0 / 20$	0/20	$0 / 20$	$0 / 20$	$0 / 20$
POLLOCK	0.1	0.1	16.1	6.4	2.5	3 - 8	37.0	20.5	93.0	29.1	3.6
PAC COD	0.1	0.1	18.6	19.5	37.6	17.8	10.4	5.4	29.0	39.0	1.4
PAC OC PERCH	0.0	0.0	C. 0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	C. 0
OTHER RCKFISH	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
SABLEFISH	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
PAC HERRING	0.0	0.0	0.5	0.2	1.1	0.0	0.1	0.0	0.0	0.0	C. 0
ATKA MaCKEREL	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
SCULPINS	39.8	1.2	10.0	0.1	0.0	0.1	0.3	0.0	0.5	0.2	0.1
EELPOUTS	0.0	0.0	0.9	2.5	2.3	1.4	24.9	0.9	0.0	0.2	C. 0
OTHER RKOFISH	2.0	2.1	1.0	0.4	0.0	0.0	0.0	0.0	0.1	0.2	0.2
TOI ROLNCFISH	42.0	3.6	47.0	29.2	43.5	23.1	72.8	26.8	122.6	68.7	5.3
YELLOH SOLE	489.9	5.0	127.7	120.2	213.6	341.8	94.1	33.6	116.6	72.1	12.2
ROCK SQLE	0.5	0.0	24.0	7-7	0.5	1.0	1.6	8.2	32.2	11.8	10.0
FLATHEAD SCLE	0.0	0.0	0.2	0.7	1.1	16.0	13.6	1.8	23.6	5.9	0.7
alaska plaice	90.3	2.7	27.2	20.9	11.6	2.8	7.7	0.7	2.0	2.3	6.4
GREENLANO IET	0.0	0.0	1.4	0.5	1.1	0.0	0.9	0.2	0.1	0.5	C. 0
ARRCHTOCIH FL	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.7	7.3	0.5	0.0
PAC HALIBUJ	0.0	0.0	2.3	2.4	2.4	0.0	2.2	1.7	16.5	25.7	0.0
OTHER FLIFISH	1.8	1.6	6.1	0.0	0.0	0.0	0.0	0.0	0.7	0.0	0.2
TOJ FLAIFISH	582.4	9.3	189.0	152.4	230.3	361.5	120.1	46.8	198.9	118.7	29.5
SKATES	0.0	0.0	0.0	1.8	1.6	0.5	0.0	0.2	4.5	1.8	0.7
JOT ELASMOERH	0.0	0.0	0.0	1.8	1.6	0.5	0.0	0.2	4.5	1.8	0.7
RED KING CRAJ	0.0	0.0	5.4	29.5	116.6	598.7	5.9	5.9	3.6	1.8	103.0
BLLE KING CRAB	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	C. 0
TANAER, GAIRDI	0.0	0.0	2.1	2.3	2.8	4.5	5.9	5.9	3.6	5.9	3.6
TANMER, OPILIO	64.4	13.6	9.1	10.2	1.8	4.1	34.5	10.9	2.9	7.3	0.9
IANNER, HYBRID	0.0	0.0	0.5	1.0	1.0	0.0	1.4	0.5	0.0	0.0	0.0
DTHER CRAB	14.5	11.8	34.5	35.3	28.3	31.4	11.3	24.0	4.5	15.9	2.3
SNAILS	20.9	29.7	28.1	9.1	6.4	6.6	40.8	13.2	2.3	5.4	0.0
SHRIMP	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1
STAFFISH	69.9	43.1	0.0	11.3	11.6	3.3	2.7	0.0	0.0	0.0	15.2
SQUID	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
DCTOPUS	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	C. 0
OTHER INVERTS	1.2	6.7	99.2	0.9	0.0	0.0	3.3	0.9	5.4	0.5	2.3
TOIAL INVEITS	171.0	104.9	179.5	99.6	168.5	648.6	105.8	61.2	22.5	36.7	127.3
OIHER	. 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	C. 0
IOIAL CAICH	795.5	117.8	415.4	282.9	443.9	1033.7	298.7	135.1	348.5	226.0	162.8

Table A-2.--Station and catch data for the chartered vessel Ocean Harvester (cont'd).

HAUL	23	24	25	26	27	28	29	30			
MONIH/DAY/YEAR	5/1甘/80	5/18/80	5/18/80	5/19/80	5/19/80	5/19/80	5/19/80	5/19/80	5/20/60	5/20/80	33 $5 / 20 / 80$
LATITUDE SIART	5620.0	5639.7	5640.1	570.2	5119.7	57 40.0	540.1	5419.8	5819.6	$58 \quad 0.4$	5720780
LONGITLDE START	16211.0	152 10.9	16323.1	16322.9	16322.6	16321.7	16321.3	15322.2	1623.1	1627.4	57.40.0
LATITUDE END	5621.7	5641.0	5641.2	571.3	5721.7	5741.3	$\begin{array}{rr}163 & 21.3 \\ 56 & 0.3\end{array}$	$\begin{array}{r}133 \\ 53 \\ \hline 19.4\end{array}$	$\begin{array}{rr}162 & 3.1 \\ 58 & 18.4\end{array}$	$\begin{array}{rr} 162 & 7.0 \\ 57 & 59.0 \end{array}$	$\begin{array}{rr} 162 & 7.8 \\ 57 & 38.7 \end{array}$
LONGITUDE END	16212.0	1529.5	16324.6	16324.4	16321.7	16320.0	16318.8	16319.8	1624.0	1628.5	1625.7
LORAN STARI	33817.70	33721.30	33913.60	33806.80	33691.80	33564.60	33422.30	33278.70	33091.90	33235.50	162 33371.60
LORAN START	46956.20	46947.40	47430.90	47423.70	47412.09	47391.80	47371.00	47356.00	46843.00	46885.30	46902.00
LORAN END	33810.70	33711.10	33912.20	33805.00	33678.50	33548.30	33414.20	33276.10	33102.90	33248.60	33374.60
GEAR DEPIH	46959020	46937.40	47440.90	47433.30	47405.29	47379.40	47354.80	47341.30	66854.70	46896.10	46889.00
DURAIIUN IN HOURS	0.50	0.50	0.55	66 0.50	53 0.50	48 0.50	42 0.50	37 0	$\begin{array}{r}46 \\ \hline 50\end{array}$	37	48
distance fished	3.06	2.82	2.61	2.50	3.44	2.98	0.50	0. 50	0.50	0.50	0.50
PERFDFHANCE / GEAR	$0 / 20$	$0 / 20$	0/20	$0 / 20$	0/20	2.98 $0 \quad 120$	- 12.40	2.44 $0 / 20$	2.46 0.20	2.98 $0 \quad 20$	3.13 $0 / 20$
POLLOCK	231.4	55.8	12.2	8.6	1.4	3.7	0.1	0.2	0.1	0.0	0.0
PAC COD	196.4	62.8	15.9	31.8	19.1	7.7	0.9	0.0	0.1	0.0	0.0
PAC CC PERCH	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	C.0
OTHER RCKFISH	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	C. 0
SABLEFISH	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
PAC HEEFING	$0-0$	0.0	0.0	0.0	0.0	0.7	0.0	3.6	0.5	0.0	C. 0
ATKA MaCKEREL	0.0	C. 0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
SCULPINS	0.5	0.1	0.0	0.0	0.6	4.1	13.3	17.0	12.7	8.4	3.4
LELPOUIS	0.0	0.0	0-2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
OTHER RNDFISH	0.0	0.1	0.2	0.0	0.4	2.1	1.8	15.2	4.3	6.0	0.9
IOT ROUNDFISH	428.2	118.9	28.5	40.4	21.4	18.3	16.1	36.1	17.7	14.4	4.3
Yellow scle	187.3	18.9	116.1	108.0	246.3	439.1	212.7	180.1.	459.9	556.1	173.3
ROCK SCLE	56.7	25.4	2.3	0.7	29.0	28.6	18.1	5.0	7.7	52.6	12.2
FLAJHEAD SOLE	2.3	5.9	4.1	1.4	1.8	0.5	0.0	0.0	0.0	0.0	10.7
ALASKA PLaICE	6.8	5.0	3.2	7.7	42.6	1 Cz 1	11.0	78.0	7.5	8.6	31.3
GREENLAND IBT	0.0	0.0	0.2	0.5	0.2	0.2	0.0	0.0	0.0	0.0	0.0
ARRCWTDOIH FL	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
PAC HALIBUI	8.2	2.4	0.0	0.7	1.3	1.9	0.0	0.5	1.8	2.4	4.4
OTHER FLJFISH	0.0	0.0	0.0	0.0	0.1	37.6	44.0	7.7	10.9	26.8	52.4
TOT FLAIFISH	261.4	117.7	125.9	118.9	321.4	609.9	345.9	271.2	10.9 487.8	26.8 646.5	52.6 274.6
SKATES	0.7	3.2	0.0	0.9	0.0	0.0	0.0	0.0	0.0		
IOT ELASMOBRH	0.7	3.2	0.0	0.9	0.0	0.0	0.0	0.0	0.0	0.0	C. 0
KED KING CFAB	59.0	44.5	25.4	112.0	256.3	23.6	5.0	1.8	0.0		
BLUE KING CRAB	0.0	0.0	0.0	0.0	0.0	23.6 0.0	0.0	1.0	0.0	11.3	20.4 0.0
TANNER. BaIRDI	99.8	8.6	4.1	0.5	0.9	0.9	1.4	0.0	0.0	0.0	3.2
IANNER. CPILIO	5.0	0.5	5.4	2.3	1.0	7.3	0.7	0.2	0.0	0.0	0.0
IANNER H HYBRID	0.9	0.0	0.0	0.0	0.0	0.5	0.1	0.0	0.0	0.0	C. 0
OTHER CPAB	0.9	0.0	5.1	7.3	9.3	11.8	14.7	2.5	3.7	0.2	0.1
SNAILS	1.4	0.0	6.1	2.7	10.9	22.2	14.3	1.4	4.5	0.5	4.1
SHRIMP	0.0	0.0	0.0	0.0	0.0	C. 0	0.0	0.0	0.0	0.0	C. 0
SIARFISH	0.0	0.0	0.0	0.0	3.2	10.4	40.8	123.1	158.3	36.7	3.6
SQUID	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	C. 0
OCICPUS UTHER INVERTS	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	C. 0
UTHER INVERTS	0.2	4.8	0.9	0.0	0.5	1.1	0.1	0.0	0.7	0.4	1.0
TOIAL INVERTS	167.1	58.3	47.0	124.7	282.5	77-8	77.1	129.0	147.3	49.2	32.4
OTHER	0.0	0.0	0.0	0-0	0.0	0.0	0.0	0.0	0.0	0.0	C. 0
JOTAL CAICH	857.5	298.0	201.5	284.9	625.3	706.0	439.0	436.4	652.7	710.0	311.2

Table A-2.--Station and catch data for the chartered vessel Ocean Harvester (cont'd).

haul	34	35	36	37	38	39	40	41	42	43	44
MONTH/DAY/YEAR	5120/80	5/20/80	5/21/80	5121/80	5/21/80	5/21/80	5/21/80	5122180	5/22180	5122/80	5/22/80
LAIITUDE SJARI	5720.0	5659.7	56 39.9	57 0.1	5720.1	5740.0	5759.9	5819.9	5819.9	50.0 .1	58 C.?
LONGITUDE START	1629.1	16210.1	16135.1	16133.9	16132.0	16129.7	16128.7	15123.8	16046.3	16050.6	16012.8
LAIIIUCE END	5710.5	5658.1	56 38.4	571.4	5721.6	5741.2	$58 \quad 0.4$	5820.9	5819.3	5758.8	581.3
LONGITUDE END	1627.3	1629.1	161 35-0	16135.3	$16131-2$	16127.5	16125.3	16121.3	16049.3	16051.2	16010.6
LORAN START	33497.20	33614.80	33628.80	33520.80	33404.40	33279.00	33149.20	33002.30	32921.50	33062.30	32979.70
LORAN STARI	46920.30	46935.60	46707.80	46692.50	46672.00	46649.00	46634.40	46594.80	46352.50	46384.40	46136.20
LCRAN END	33501.20	33620.90	33635.80	33517.60	33393.70	33266.20	33139.30	32989.20	32932.10	33071.80	32968.00
LORAN END	46908.70	46929.50	46707.70	46701-30	46666.00	46634.20	46614.90	46578.30	46372.20	46388.80	46121.90
GEAF DEPJH	51	62	91	68	53	53	55	31	- 20	4.4	49
DURATION IN HOUFS	C. 50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50
DISTANCE FISHED	3.30	3.13	2.70	2.67	2.89	3.13	3.04	3.17	3.19,	2.43	3.00
PERFORMAMCE / GEAR	$0 / 20$	$0 / 20$	$0 / 20$	$0 / 20$	$0 / 20$	$0 / 20$	0120	$0 / 20$	0 / 20	$0 / 20$	$0 / 20$
POLLOCK	0.5	5.4	215.5	0.7	4.6	1.9	0.0	0.1	0.0	2.6	1.4
PAC COD	18.1	18.6	29.9	8.2	146.1	14.5	0.0	0.1	0.0	0.1	C. 0
PAC OC PERCH	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	C. 0
OTHER RCKFISH	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	C. 0
SABLEFISH	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	C. 0
PAC HEGFING	0.0	0.0	0.0	0.0	0.0	6.4	0.1	0.1	0.0	0.0	0.0
ATKA MACKEREL	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
SCULPINS	6.6	0.3	0.7	0.3	1.5	3.6	0.7	67.9	43.5	4.0	3.6
EELPDUTS	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	C. 0
CTHER FNDFISH	0.8	0.4	0.1	0.4	0.6	3.2	12.9	30.9	11.9	2.1	10.2
IOI ROUNDFISH	25.9	24.B	246.2	9.6	152.7	29.6	13.7	99.1	55.4	8.8	15.2
YELLON SOLE	327.0	234.7	99.3	54.0	289.4	458.6	218.0	150.1	220.8	1478.5	565.6
ROCK SOLE	62.6	26.8	9.1	23.6	36.1	47.2	1.4	38.6	15.9	10.8	16.6
FLA IHEAD sole	3.6	10.0	5.4	5.4	8.2	0.7	0.1	0.0	0.0	0.0	0.0
ALASKA PLAICE	77-1	10.9	0.7	11.3	53.5	42.2	3.6	1.8	5.9	29.8	22.2
GREENLAND TBI	0.1	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
ARRCWTODIH FL	C. 0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	C. 0
PAC HALIBCT	8.0	2.4	2.4	9.8	11.9	4.4	3.9	1.0	5.0	6.8	1.2
OTHEI FLIFISH	7-5	0.5	0.0	0.0	0.2	18.1	0.7	45.8	31.3	30.6	29.9
TOJ FLAIFISH	485.9	285.3	117.0	104.1	399.8	571.2	227.7	237.4	286.9	1556.5	635.6
SKA IE S	0.0	0.9	0.2	0.0	1.4	0.0	0.0	0.0	0.0	0.0	0.0
TOI ELASMOBRH	0.0	0.9	0.2	0.0	1.4	0.0	0.0	0.0	0.0	0.0	0.0
RED KING CFAB	90.7	127.0	266.7	87.5	11.3	15.9	0.0	2.3	2.3	15.0	6.8
BLUE KING CRAB	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
JANAER P GAIRDI	6.8	9.1	296.2	5.0	9.3	4.5	0.0	0.0	0.0	3.6	0.9
IANNER, CPILIO	2.7	0.0	0.9	0.0	0.5	0.0	0.2	0.0	0.0	0.0	C. 0
IANNER, HYBRID	0.0	0.0	2.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
OTHEA CFAB	0.9	0.5	0.2	0.7	5.4	8.8	0.5	2.4	0.2	1.7	5.9
SNAILS	0.5	0.9	0.0	0.0	2.7	11.6	1.4	0.0	0.0	2.1	4.5
SHRIMP	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.1	0.0	0.0	0.0
STARFISH	2.3	0.0	0.0	0.0	5.9	6.4	54.0	117.3	0.0	89.6	108.9
SQUID	C. 0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	C. 0
OCIEPUS	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
DIHER INVEFTS	70.5	0.0	26.5	41.8	20.5	24.6	0.6	0.3	0.2	1.8	0.7
TOIAL INVERTS	174.4	137.4	592.8	135.0	55.7	71.8	56.7	122.3	2-7	113.9	127.7
OTHER	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
TOIAL CAICH	686.3	448.4	956.2	248.8	609.5	672.5	298.0	458.8	345.0	1679.1	778.5

Table A-2. -- Station and catch data for the chartered vessel Qcean Harvester (cont'd).

HALL	45	46	47	48	49	50	51	52	53	54	55
MDNIH/DAY/YEAR	5/24/80	5/24/80	5/24/80	5/26/80	5/24180	5/25/80	5125/80	$3 / 25 / 80$	5/26/80	5/26/80	5/26/80
LAIITUDE SIART	5820.0	5419.9	500.1	57 60.0	5759.7	574001	5740.0	5740.0	5740.0	5739.8	5719.9
LONGITUDE STARI	16010.8	15932.7	15935.6	15857.9	15819.1	15821.3	1591.2	15937.9	16015.9	16052.5	16055.8
Latijude end	5819.6	$58 \quad 20.9$	57 58.8	580.0	$58 \quad 0.6$	5741.7	57 38.4	5735.9	5740.4	57 38.4	5720.5
LONGITUCE END	1607.9	15932.7	15937.0	15854.7	15815.9	15821.7	1591.5	15934.6	16018.3	16052.8	16053.4
LORAN SIARI	32847.90	32773.30	32903.40	32029.30	32757.00	32873.60	32953.10	33028.80	33110.60	33193.40	33318.50
LORAN STARI	46123.90	45878.10	45892.70	45645.00	45390.70	45397.90	45662.60	45906.60	46159.00	46402.10	46430.30
LOKAN END	32844.60	32765.50	32914.30	32822.90	32745.80	32865.10	32962.70	33022.50	33113.60	33203.10	33309.50
LORAN END	46105.10	45875.10	45901.4 C	45624.00	45370.40	4540080	45664.80	45884.90	46175.10	46404.60	46613.70
GEAR DEPTH	15	24	40	40	33	33	48	48	55	57	64
DUFAIION IA HOURS	0.50	0.50	0.50	0.50	0. 50	0.50	0.50	0.50	0.50	0.50	0.50
DISTANCE FISHED	2.93	2.02	2.80	3.17	3.56	3.09	2.91	3.26	2.54,	2.76	2.69
PERFDRNANCE / GEar	$0 / 20$	$0 / 20$	$0 / 20$	$0 / 20$	$0 / 20$	$0 / 20$	0120	0120	0120	$0 / 20$	$0 / 20$
POLLOCK	0.0	0.0	0.1	0.1	0.1	0.0	0.1	13.4	9.1	0.1	7.3
PaC COD	0.1	0.5	0.1	0.1	0.5	0.5	0.9	48.8	1.8	0.7	3.2
PAC GC PERCH	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
OTHER RCKFISH	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
SABLEFISH	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
PAC HERRING	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.7	0.0
ATKA MACKEREL	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	C. 0
SCULPINS	30.2	13.5	70.2	10.2	8.3	37.6	21.6	2.4	1.7	2.4	0.9
EELPOUIS	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0 00	0.0	0.0	C.O
CTHER RNDFISH	10.6	1.4	10.5	3.3	0.7	2.2	10.8	2.4	1.8	1.5	1.2
TGI RQUNCFISH	41.0	15.4	81.0	13.7	9.5	80.3	33.5	67.1	14.4	5.3	12.5
YELLOH SCLE	150.3	1133.6	965.9	457.9	173.5	1444.3	480.6	1446.0	199.6	439.1	427.7
ROCK SOLE	0.5	0.0	215.3	17.7	13.6	173.1	44.0	153.6	60.3	45.4	28.6
FLAIHEAD SDLE	0.0	0.0	0.0	0.0	0.0	0.0	0.7	2.4	1.4	6.6	6.8
alaska plaice	0.0	2.0	0.4	0.0	0.0	0.2	0.0	0.5	10.0	24.9.	18.6
GREENLAND TET	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.2
ARRCIICCIH FL	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	C. 0
PAC HALIBUI	6.4	0.0	9.4	10.3	1.0	0.0	0.5	3.4	4.5	3.6	6.4
OTHER FLIFISH	8.2	43.4	108.3	11.6	0.2	1.7	5.9	31.7	27.7	4.5	0.9
TOT FLATFISH	205.2	1179.0	1299.8	477.5	188.3	1619.3	531.7	1637.7	303.4	524.0	489.2
SKAIES	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.8
TOT ELASMOBRH	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.8
RED KING CRAB	0.0	0.0	0.0	0.0	9.1	0.0	1.4	18.1	22.7	34.0	65.4
BLUE KING CRAB	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
IANAER, GAIRDI	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.7	5.4	2.3	22.7
JANNER. OPILIO	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	C. 0
IANNER. HYBRID	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
CTHEA CRAB	29.9	2.7	0.9	0.0	0.5	0.3	0.4	0.7	1.4	5.2	2.3
SNAILS	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.0	2.3	13.6	0.0
SHRIMP	0.0	0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	c. 0
STAFFISH	3.2	34.7	16.7	18.1	61.5	76.4	143.3	524.3	19.5	28.1	10.0
SQUID	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
OCTOPUS	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	C. 0
OTHER INVERTS	0.2	0.0	0.0	3.2	0.2	0.0	0.2	0.5	5.2	15.0	36.8
TOTAL INVERTS	33.3	37.5	17.7	21.3	71.4	76.7	145.3	544.3	56.5	98.2	117.1
OTHER	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
IOJAL CAICH	279.5	1231.8	1398.5	512.5	269.2	1776.3	710.4	2249.1	374.3	627.5	620.7

Table A-2. --Station and catch data for the chartered vessel Ocean Harvester (cont'd).

HAUL	56	57	50	59	60	61	62	63	64	65	66
MONTH/DAY/YEAR	5/26/80	5/26/20	5/27180	5/27/80	5/27/80	5/27/80	5/28/80	5128/80	5/28/80	5/28/80	5/28/80
LAIIIUDF SIART	5720.0	5719.9	5720.0	5719.8	5659.1	5659.7	5639.9	5640.2	570.0	5659.7	5639.8
I ONEITUCE STARI	16017.7	15939.5	1593.4	158.17-8	1597.5	15942.6	15945.8	16021.9	16020.5	16056.6	16059.0
LAIITUDE END	57 20.2	5720.7	5720.8	5710.5	5658.8	5658.1	56 41-1	5641.7	5659.8	5658.4	563 E .4
LONGITUCE ENO	16015.0	15936.4	1590.5	15819.9	15910.6	15942.7	15946.5	15023.4	16023.8	16058.8	16057.6
LOFAN STARI	33230.20	33145.90	33069.00	32977.20	33184.30	33261.00	33367.60	33449.60	33344.90	13432.10	33539.80
LORAN SIARI	46175.00	45919.60	45678.40	45373.40	45711.30	45946.60	45976.20	45217.80	46199.70	46442.40	46466-10
LORAN END	13223.20	33135.00	33058.60	32988.00	33195.90	33269.50	33363.20	33445.50	33344.40	33444.30	33543.40
LORAN END	46157.50	45398.90	45659.20	45387.50	45732.60	45948.10	45980.40	46227-20	46222-30	46458.00	46457-40
GEAR DEPTH	59	55	48	20	29	55	35	59	60	64	70
DURATION IN HOURS	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50
DISTANCE FISHED	2.65	3.41	3.24	3.13	3.63	2.94	2.41	3.26	3.37	5.30	2.96
PERFORMANCE / GEAR	$0 / 20$	0120	$0 / 20$	$0 / 20$	0/20	0/20	$0 / 20$	0120	0/20	$0 / 20$	$0 / 20$
POLLOCK	73.0	31.3	0.0	0.0	0.0	0.3	207.9	17.2	6.8	62.4	16.8
PAC COD	106.6	176.4	72.3	0.0	21.3	318.8	1320.1	334.8	337.2	347-5	106.1
PAC OC PERCH	0.0	0. 0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	C. 0
OTHER RCKFISH	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
SABLEFISH	0.0	0.0	0.0	0.0	0.0	0.0	0.0	C. 0	0.0	0.0	0.0
PAC HESFING	0.0	0.0	0.0	0.9	0.0	0.0	0.0	0.0	0.0	0.0	C. 0
ATKA MACKEREL	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	C. 0
SCULPINS	2.0	2.1	45.6	29.5	42.7	1.8	9.8	10.2	1.1	0.2	3.1
EELPOUTS	C. 0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	C. 0
OTHER RNDFISH	3.3	2.5	6.4	65.6	4.0	3.6	2.1	2.6	3.9	0.2	0.9
IOT ROUNDFISH	184.9	212.4	124.2	96.0	68.1	324.5	1547.9	364.8	348.9	410.3	126.9
YELLOH SOLE	84.9	152.2	276.2	464.9	101.6	555.0	704.3	133.4	196.5	165.5	254.9
ROCK SOLE	96.8	191.0	137.7	4.5	154.2	258.8	588.7	84.8	273.0	157.2	134.7
flatheac scle	5.7	1.1	0.9	0.5	0.1	5.4	0.6	0.9	6.0	5.3	5.0
ALASKA PLaICE	4.5	0.7	0.0	6.6	0.7	0.0	C. 0	0.0	3.0	3. 8	21.3
GREENLANO IBT	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	C. 0
ARRCWICOJH FL	0.0	0.0	0.0	0.0	0.0	0.4	0.0	0.0	0.0	0.0	C. 0
PaC Haligut	5.3	14.5	0.0	8.5	2.0	2.9	25.5	8.1	8.9	9.3	11.7
OTHER FLTFISH	2.7	41.0	3.9	6.8	49.0	25.4	25.3	4.1	7.6	0.8	4.2
IOJ FLAJFISH	199.9	400.5	418.6	491.8	308-1	845.9	1344.4	231.3	495.1	341.8	431.8
skates	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3.8	6.8
IOI ELASMDBRH	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3.8	6.8
REO KING CRAB	20.9	31.8	13.6	3.2	22.7	6.4	1.4	27.2	276.7	83.9	96.6
BLUE KIKG CRAB	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
IANNEF. BAIRDI	10.4	7.3	1.4	0.0	0.5	6.8	0.7	10.4	10.9	16.8	21.8
JANNER. CPILID	0.0	0.0	0.0	0.0	0.0	0.0	0.0	C. 0	0.0	0.0	C. 0
TANNER. HY日RID	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	C. 0
OTHER CRAB	1.6	1.6	4.8	0.3	6.3	0.8	0.0	4.1	2.3	0.0	3.8
SNAILS	0.2	0.0	0.1	0.0	0.0	0.0	0.0	0.9	0.0	0.0	C. 1
SHRIMP	0.1	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.0	0.0	C. 0
STARFISH	0.7	104.8	653.5	37.6	1134.0	126.7	55.9	42.0	9.1	0.0	0.0
SOUID	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
OCIDPUS	C. 0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	C. 0
OTHER IAVERTS	61.2	2.7	3.4	0.0	0.0	28.0	0.6	9.3	158.0	454.3	34.0
TOIAL INVFRTS	95.1	149.1	676.8	41.1	1163.9	168.9	58.6	93.9	456.9	555.0	156.3
OTHER	0.0	0.0	0.0	C. 0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
IOTAL. CAJCH	479.9	761.0	1219.6	628.9	1540.1	$\because 1339.2$	2950.9	689.9	1301.0	1310.8	721.9

Table A-2.--Station and catch data for the chartered vessel Ocean Harvester (cont'd).

haul a	67	68	69	70	71	72	73	74	76	71	78
MQNTH/DAY/YEAR	5/29/80	5/29/80	5/31/80	5/31/80	5/31/80	6/1/80	$6 / 1 / 80$	$6 / 1 / 80$	$6 / 5 / 80$	6/ 6/80	686/80
Latitude stari	5620.0	5619.9	550.5	5520.1	5540.3	5560.0	5559.8	5539.4	5520.6	5620.7	5640.2
LONGITUDE START	1610.0	161 38.0	16656.1	16657.9	16658.8	1670.5	167 36.6	16735.1	16733.5	167108	1673.8
LAJIIUDE END	5619.1	5618.8	55 2.0	5521.9	5542.0	56 0.8	5558.3	5538.0	5522.2	5622.4	5641.8
LONGITLDE ENO	1612.2	16140.4	16657.8	16658.1	16657.6	1673.1	167 35.6	16733.6	16735.3	1671.4	1673.6
LORAN STARI	35636.30	33731.50	34823.40	\$4796.80	54760.20	34717.10	34820.50	54856.30	54831.00	34551.00	34587.00
LOKAN STAHI	46490.10	46732.80	48675.90	48734.90	48734.50	48832.60	49053.30	48995.40	48937.00	48672.00	48903.00
LOFAN END	33646.20	33742.40	34825.20	34394040	34753.30	34722.40	34821.00	34855.00	34883.00	34650.00	34579.00
LORAN END	46495.50	46749.20	48691.70	48740.10	48780.80	48850.30	49044.20	48983.30	48951.00	48872.00	48902.30
gear deftil	53	64	157	141	135	137	136	135	148	113	95
DURATIOR IN HOURS	C. 50	0.50	0.50	0.50	0.50	D. 50	0.50	0.50	0.50	0.50	0.50
uIStance fisheo	2.89	3.20	3.26	3.17	3.37	3.13	2.87	3.06	3.44	3.18	3.04
PERFORMANCE $/$ GEAR	$0 / 20$	$0 / 20$	0120	$0 / 20$	0120	$0 / 20$	$0 / 20$	$0 / 20$	O/20,	$0 / 20$	$0 / 20$
Pollock	3738.3	62.2	13.6	127.5	207.3	97.1	154.2	31.8	134.5	1141.6	757.4
PAC COD	140.9	28.2	44.0	29.5	19.5	14.1	18.1	48409	102.1	108.0	137.2
PAC OC PERCH	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	C. 0
OTHER RCKFISH	0.0	0.0	0.0	0.0	D. ${ }^{\text {d }}$	0.0	C. 0	0.0	0.0	0.0	C. 0
SABLEFISH	0.0	0.0	20.4	2.3	1.3	0.5	0.0	0.9	6.8	2.9	0.0
PaC HERFING	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	C. 0
atKa mackerel	0.0	0.0	0.0	0.0	0.5	0.0	0.0	0.0	1.8	0.0	0.0
SCULPINS	0.7	22.2	2.5	1.2	0.4	0.6	2.6	3.1	1.4	22.1	0.0
EELFOUTS	0.0	0.0	2.3	147.9	80.3	99.3	109.1	59.4	5.0	22.2	705
OTHER GNUFISH	0.7	0.1	0.4	5.8	0.3	1.7	9.1	2.8	0.7	404	C. 0
IOI ROUNDFISH	3880.6	112.7	E3.2	314.1	310.1	213.2	293.1	Se2.9	252.3	1301.3	902.1
YELLOM SELE	237.1	466.8	0.0	0.0	0.0	0.0	0.0	C. 0	0.0	2.1	8.8
ROCF SULE	51.5	637.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
flathead sfle	17.2	60.7	24.5	31.3	39.9	39.5	79.8	89.8	27.7	15.1	2.7
ALASKA PLAICE	0.4	2.9	0.0	0.0	0.0	0.0	0.0	0.0	0.0	4.4	11.7
GREENLAND IEI	0.0	0.0	8.6	4.5	7.7	8.2	7.7	1.8 ${ }^{\text {a }}$	1.1	2.9	2.4
ARRDATOOTH FL	0.0	0.3	56.2	24.9	10.9	23.1	15.0	19.1	32.7	10.C	4.8
PaC Halibut	0.0	54.7	6.2	0.0	0.0	0.0	48.4	21.0	0.0	1.0	0.0
OTHER FLTEISH	6.2	20.7	1.1	2.0	0.1	0.1	0.1	0.1	0.9	1.7	0.0
TOI FLAIFISH	312.4	1243.4	96.7	62.8	58.6	70.9	151.1	131.7	62.4	37-1	30.2
SKA IES	0.0	1.5	2.7	0.0	9.1	39.5	19.5	4.5	19.1	0.0	17.3
IOJ ELASMOBRH	0.0	1.5	2.7	0.0	9.1	39.5	19.5	4.5	19.1	0.0	17.3
RED KING CRAB	33.6	843.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
BLUE KING CRAE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	c. 0
tanner, balrdi	3.6	19.1	107.5	61.2	11.0	6.8	29.5	30.6	104.3	9.1	3.6
IANNER. CPILIO	0.0	0.0	3.2	4.5	0.0	0.5	0.1	0.0	0.0	4.5	12.3
JANAER, HYBRID	0.0	0.0	0.0	0.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0
UTHER CFAB	2.5	1.0	0.9	0.0	0.0	1.4	0.9	0.5	5.0	18.0	6.1
SNAILS	C. 0	0.0	4.1	0.2	0.2	0.2	0.9	0.0	5.0	1.9	5.9
SHRIMP	0.0	0.0	0.7	1.1	0.2	$0=7$	0.7	0.0	0.0	0.0	0.0
Starfish	92.8	4.4	0.2	0.0	0.0	0.0	0.0	0.0	1.6	159.2	22.9
SQuio	0.0	0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	C. 0
CCICPUS	0.0	0.0	0.0	0.0	11.3	0.0	0.0	0.1	0.0	0.0	1.2
DIHER INVERTS	5.2	2.7	28.6	2.3	13.6	0.0	2.3	2.4	17.4	0.1	0.0
IOTAL INVERTS	137.7	870.9	145.3	69.6	37.1	9.5	34.3	41.5	133.3	192.8	52.0
OTHER	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
total catch	4330.6	2228.5	327.8	446.5	414.9	333.0	498.0	760.7	467.0	1531.2	1001.6

Table A-2.-- Station and catch data for the chartered vessel Ocean Harvester (cont'd).

HaUl	79	80	81	82	${ }^{3} 3$	94	85	86	87	88		89	
MONTH/DAY/YEAR	$616 / 80$	$616 / 80$	6/7/30	$617 / 80$	6/7180	6/ 7/80	$617 / 80$	$6 / 8 / 80$	$6 / 3 / 80$	6/ $8 / 80$		$8 / 80$	
LATITUDE START	57 c. 7	5720.4	57 40.1	580.1	5820.0	5820.0	5840.0	$59 \quad 0.3$	5920.0	59 40.0	60	0.5	
LONGITUDE START	1674.7	1677.2	167 A.1	167 9.8	16711.0	.16749.9	16752.0	16753.0	16755.0	16756.8	167	59.2	
LAIITUBE END	572.4	5722.0	5741.8	581.9	5821.5	5821.8	5841.7	591.9	5921.2	5942.1	60	2.4	
LONGITUDE END	167 4.1	1676.9	1678.4	1679.6	16713.1	16749.6	16750.6	16752.4	16756.9	16757.6	167	59.9	
LORAN SIARI	34488.60	34375.80	34234.40	34072.00	33889.30	33995.00	33778.50	33565.20	33345.30	33115.20	3287	77.80	
LORAN STARI	48911.00	49911.80	48883.30	48842.50	48784.60	49012.70	48937.00	48850.00	48768.60	48684.00	4060	00.80	
LORAN END	34476.80	34364.10	34222.40	34055.00	33880.00	33975.00	33766.20	33546.90	33334.80	33092.50	3285	5-20	
LORAN END	48906.30	48907-70	48881-60	48836.20	48792.40	49003.10	48922.90	48840-20	48771.90	48678.00	4859	95.10	
GEAR DEPTH	73	70	68	62	51	60	46	40	38	33		26	
DURAIICK IN HCUFS	0.50	0.50	0.50	0.50	0.50	C. 50	0.50	0.50	0.50	0.50		0.50	
OISIANCE FISHED	3.09	2.44	3.06	3.46	3. 50	3.46	3.35	2.67	2. $\mathrm{BI}^{\text {I }}$	3.85		3.59	
PERFORMANCE / GEar	$0 / 20$	$0 / 20$	$0 / 20$	$0 / 20$	$0 / 20$	$0 / 20$	0120	$0 / 20$	$0 / 20$	$0 / 20$	0	120	
PCLlock	73.3	395.1	22.5	17.5	9.7	12.4	6.8	4.5	15.9	0.0		0.1	
PAC COD	16.6	173.6	143.5	251.1	56.5	41.7	4.7	1.7	2.1	0.2		0.1	
PAC OC PERCH	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	
OTHER RCKFISH	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	
SABLEFISH	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		C. 0	
PaC herring	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.2	0.1		C. 0	
ATKA Mackerel	0.0	0.0	0.0	0.0	0.0	0.0	0.0	C. 0	0.0	0.0		0.0	
SCULPINS	5.6	20.4	4.8	2.2	132.4	26.5	27.4	23.1	19.1	91.4		58.2	
EELPOUTS	5.4	19.7	66.5	15.2	11.4	21.9	35.0	13.8	4.1	4.3		0.0	
OTHEH RNDFISH	0.0	0.0	0.1	0.1	8.5	2.0	1.3	2.3	15.1	176.5		11.7	
TOT ROUNDFISH	101.0	608.9	237.3	286.0	218.6	104.7	75.2	45.6	56.5	272.5		70.1	
yelloh sole	157.8	174.6	109.4	120.7	404.3	252.1	174.0	236.0	216.2	170.1		35.1	
ROCK SOLE	6.8	3.5	1.6	0.5	29.7	5.9	14.7	12.0	9.1	3.9		3.4	$\stackrel{\rightharpoonup}{\circ}$
flathead sole	10.4	6.5	1.4	0.1	0.0	0.7	1.2	1.1	1.1	1.2		C. 0	-
alaska plaice	15.3	82.7	104.3	120.3	244.4	219.8	85.7	53.5	65.0	98.2		21.2	
GREENLAND IdI	0.0	2.1	2.9	1.1	4.6	3.4	1.8	0.4	0.0	0.0		0.0	
ARRCHIDOTH FL	1-1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		C. 0	
PAC HALIBUI	4.2	0.0	0.4	0.0	0.0	0.7	1.7	4.9	1.4	0.4		C. 0	
OTHER FLTFISH	0.0	0.0	0.0	0.0	8.6	0.0	12.7	12.2	4.1	3.2		4.5	
TOT FLAIFISH	195.7	269.5	219.9	242.7	691.6	482.5	291.7	320.1	297.B	277.0		64.2	
SKATES	9.5	5.4	36.0	6.7	0.0	0.0	0.0	0.0	0.0	0.0		C. 0	
TOT ELASMCBRH	9.5	5.4	36.0	6.7	0.0	0.0	0.0	0.0	0-0	0.0		0.0	
RED KING CRAB	0.0	0.0	0.0	0.0	0.0	0.0	0.4	4.1	0.4	0.0		C. 0	
BLUE KING CRAB	0.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	
TANKER, EAIRDI	1.5	2.7	2.4	0.0	0.0	0.2	0.0	0.0	0.0	c. 0		C. 0	
TANNER, OPILID	28.0	14.4	11.8	11.1	109.8	21-9	176.0	25.2	0.8	0.0		0.0	
TANAER, HYBRID	0.0	1.1	1.4	0.0	0.0	0.2	2.2	0.0	0.0	0.0		C. 0	
OTHER CFAB	2.0	0.0	2.5	0.5	1.8	8.7	19.7	1-1	2.6	0.0		C. 0	
SNAILS	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	
SHRIMP	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		2.3	
STARFISH	80.7	30.7	16.3	14.0	45.1	81.2	61.2	36.7	137-4	130.9		13.9	
SQUID	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		C. 0	
OCICPUS	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		C. 0	
OTHER INVEATS	136.6	309.8	101.6	40.0	137.1	325.5	132.5	46.0	41.1	15.6		4.5	
JOIAL INVERIS	249.4	358.8	135.9	65.5	293.8	437.7	391.9	113.2	182.3	146.5		20.7	
OIHER	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	
TOTAL CAJCH	555.6	1242.5	629.2	600.9	1204.1	1024.9	758.9	478.8	536.6	696.0		155.0	

Table A-2.--Station and catch data for the chartered vessel Ocean Harvester (cont'd).

Table A-2.--Station and catch data for the OCEAN HARVESTER (cont'd).

HAUL	101	102	103	104	105	106	107	108	109	110	111
MONIM/DAY/YEAR	6/11/80	6/11/80	6/12/80	6/13/80	6/13/80	6/13/80	6/13/80	6/13/60	6/14/80	6/14/80	6/14/80
LAIITUDE START	5920.0	5920.1	57 20-2	5720.1	5740.2	5740.0	$58 \quad 0.0$	5760.0	580.1	5760.0	580.1
LONGITUDE START	16914.0	16334.1	16857.9	16822.0	16824.2	1691.8	1694.0	15942.0	17020.2	17057.9	17136.2
LAIITUDE END	5920.1	$\begin{array}{lll}59 & 19.4\end{array}$	5720.1	5720.2	5741.0	5741.3	$58 \quad 0.3$	5759.6	$58 \quad 0.1$	580.6	581.6
LONGITUDE ENO	16910.6	16831.2	16855.0	16818.6	16826.4	16859.9	1697.8	16945.0	17023.4	1710.9	17137.1
LORAN SIART	33470.70	33411.10	34755.80	34638.00	34482.70	34603.60	34398.00	34476.00	34514.40	34512.10	34473.00
LQRAN START	49113.50	48946.90	49646.00	49409.30	49371.30	49602.90	49519.80	49701.80	49843.90	49938.30	49994.20
LORAN END	33464.80	33414.30	34756.80	34625.40	34482.30	34584.20	34400.80	34485.80	34516.10	34503.70	34455.40
LOFAN END	49095.30	48937.30	49627-60	49387.00	49382.10	49585.50	49530.90	49717.50	49853.90	49940.50	49987-20
GEAR DEPTH	49	40	70	73	70	68	68	70	75	86	97
DURAIIGN IN HOURS	0.50	0.50	C. 50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50
DISIANCE FISHED	3.26	3.07	2.89	3.35	2.65	3.19	2-96	3.07	3.17	3.11	3.00
PERFORMANCE / GEAR	0/20	$0 / 20$	$0 / 20$	$0 / 20$	$0 / 20$	$0 / 20$	$0 / 20$	0 -20	$0 / 20$	0120	$0 / 20$
POLLOCK	3.2	2.8	135.9	34.0	286.1	27.8	87.6	28.1	20.3	137.6	63.9
PAC COD	60.6	3.5	79.6	64.2	67.9	45.9	256.6	92.4	42.2	51.3	125.6
PAC OC PERCH	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	C. 0
OTHER RCKFISH	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	C. 0
SABLEFISH	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Pac Henring	0.0	0.0	0.0	0.0	0.0	0.0	0.0	C. 0	0.0	0.0	c. 0
Atka Mackerel	0.0	0.0	0.3	0.0	0.0	0.0	0.1	0.0	0.1	0.0	c. 0
SCULPINS	27.4	23.9	142.5	34.8	9.6	19.3	8.6	11.6	18.1	49.4	18.6
EELFOUTS	35.5	9.7	0.5	12.8	10.8	15.7	7.8	10.9	13.5	51.5	83.7
OTHER FNCFISH	1.4	0.7	0.7	0.2	0.2	0.0	0.3	0.7	0.1	0.0	0.2
TOT ROUNDFISH	128.1	40.7	359.7	146.0	314.5	108.7	361.0	143.7	94.3	289.9	292.1
YELLOH SOLE	135.3	60.6	51.3	195.3	155.5	146.1	146.0	60.9	26.2	4.8	10.5
ROCK SOLE	3.6	14.4	41.2	17.1	2.7	2.6	8.4	8.9	4.9	1.2	4.5
FLATHEAD SLLE	3.8	0.5	0.0	3.1	3.0	4.7	2.6	1.7	2.0	6.6	2.2
ALASKA FLAICE	282-3	46.5	9.9	33.2	46.6	24.4	19.8	28.5	20.9	7.9	13.7
GREENLAND JBT	0.9	1.5	0.0	1.5	0.9	3.5	2.9	8.2	12.6	13.6	22.7
ARROHTODIH FL	0.0	0.0	0.0	2.9	0.7	1.7	0.0	0.0	0.0	0.0	G. 0
PaC halibut	0.0	2.9	0.0	2.8	$1-1$	2.3	2.5	0.0	0.0	4.0	4.1
OTHER FLIFISH	2.4	7.1	0.0	0.0	D.0	0.0	0.0	0.0	0.0	0.0	0.0
TOI FLATFISH	428.3	133.5	102.4	256.0	211.1	185.2	182.2	108.2	66.7	30.1	5.7 .7
SKATES	0.0	0.0	0.0	8.3	3.6	1.7	7.8	2.4	10.3	10.4	92.0
IOJ ELASMOBRH	0.0	0.0	0.0	8.3	3.6	1.7	7.8	2.4	10.3	10.4	92.0
RED KING CRAB	0.0	0.0	0.5	0.0	2.5	0.0	0.0	0.0	0.0	0.0	0.0
BLUE KING CRAB	0.0	0.0	127.5	5.0	7.3	12.2	5.4	18.1	9.8	6.4	2.7
TANNER, BAIRDI	0.0	0.0	1.9	6.1	1.4	0.0	0.0	0.1	0.0	$\therefore 0.0$	0.1
TANNER, OPILIO	224.1	3.6	18.6	72.3	3.7	2.2	1.6	5.9	1.8	118.4	2.0
TANNER, HYBRID	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	C. 0
OTHER CRAB	0.0	2.0	110.2	6.4	2.0	2.3	4.5	5.4	0.0	0.0	0.0
SNAILS	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
SHRIMP	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.4
STARFISH	54.6	29.4	14.7	37.7	22.6	51.5	12.9	24.3	48.2	77.6	27-4
SQUID	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
OCTOPUS	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0
OTHER INVERTS	98.2	44.0	91.1	353.3	390.1	411.5	153.3	116.8	36.9	36.5	28.8
TOTAL INVERTS	376.8	79.1	364.4	480.9	429.6	479.7	177.8	170.6	96.7	239.9	61.4
Other	0.0	D. 0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	C. 0
TOTAL CATCH	933.2	253.3	826.4	891.1	2019.0	775.4	728.8	424.8	268.0	578.3	503.2

Table A-2.--Station and catch data for the chartered vessel Ocean Harvester (cont'd).

HaUl	112	113	114	115	116	117	118	119	120	121	122
MONTH/DAY/YEAR	6/14/80	6/15/80	6/15/80	6/15/80	6/15/80	6/16/80	6/16/80	6/16/80	6/16/80	6/16/80	6/17/80
LAIITUDE SIARI	5819.8	5819.8	5 5 20.0	5819.9	5820.0	58 40.0	5840.0	5840.0	5840.0	58 59.8	5859.8
LONGITUDE START	17138.8	1710.9	17023.0	16944.0	1697.1	169 9.1	16947.0	17026.0	1715.0	1718.2	170.28.8
LATITUDE END	$58 \quad 19.2$	$58 \quad 19.6$	5021.1	5819.0	5821.6	58 40.7	5839.7	5639.9	5840.0	5860.0	5859.8
LONGITUDE END	17135.6	17057.5	17021.0	16941.8	1698.4	16911.7	16949.9	11029.0	1717.3	1714.9	17025.7
LORAN STARI	34254.20	34277.40	34272.60	34238.00	34176.80	33944.90	35997.30	34029.00	34036.80	35799.80	33788.30
LORAN SIARI	49990.70	49822.30	49722-80	49585-10	49421.90	49317.80	49472.70	496C5-10	49708.80	49597.70	49492.20
LCRAN END	34264.50	34280.60	34258.20	34246.50	34160.50	33940.30	34004.30	34032.30	34034.20	33797.50	33786.30
LORAN ENC	49889.60	49816.00	49709.50	49582.00	49419.10	49324.80	49485.40	49615.00	49712.50	49589.80	49482.50
GEAF DEPTH	95	32	73	70	68	62	66	73	82	77	70
DURAIION IN HDURS	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50
DISIANCE FISHED	3.39	3.33	2.83	2.80	3.28	2.d2	2.85	2-91	2-74	3-15	3.06
PERFDRMANCE / GEAR	$0 / 20$	$0 / 20$	$0 / 20$	$0 / 20$	0/20	0/20	$0 / 20$	$0 / 20$	$0 / 20$	$0 / 20$	$0 / 20$
POLlock	132.3	659.6	1815.8	182.0	256.3	12.4	124.7	92.9	42.4	10.8	361.0
PAC COD	184.0	141.7	120.7	78.5	459.4	247.1	185.3	245.1	94.4	0.2	32 C .2
PAC OC PERCH	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
OTHER RCKFISH	C. 0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
SABLEFISH	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
PAC HERRING	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
ATKA MACKEREL	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	C. 0
SCULPINS	11.0	26.8	7.3	6.1	6.4	15.0	22.3	16.9	6.6	7.2	6.2
EEIPDUTS	73.1	49.4	2.6	2.3	24.1	143.8	104.5	77.2	42.6	57.9	102.8
OTHER RNCFISH	0.1	0.0	0.0	0.1	0.1	0.4	0.0	0.1	0.0	0.5	C. 0
TOI ROLNDFISH	400.5	877.4	1946.4	269.8	746.3	418.6	436.8	432.1	186.0	76.7	198.1
YELLOW SOLE	15.3	14.8	7.3	34.5	198.6	201.4	63.8	26.1	3.8	7.4	201.9
ROCK SOLE	0.0	0.5	0.0	1.6	1.8	0.0	1.2	0.7	0.5	0.2	9.7
FLATHEAD SOLE	9.1	2.9	1.5	0.7	0.1	0.5	1.7	1.3	2.2	2.2	7.7
alaska plaice	0.0	13.6	0.0	15.4	150.1	163.4	26.9	40.6	4.9	1.3	28.4
GREENLAND JBT	15.0	5.4	3.9	2.3	25.2	2.8	11.1	14.0	4.5	3.2	20.8
ARRDHTOCTH FL	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	C. 0
PAC HALIBUI	0.5	1.0	0.0	0.4	6.3	5.2	3.5	3.0	16.6	1.8	2.0
OTHER FLIFISH	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	C. 0
TOT FLAIFISH	39.9	38.1	12.6	54.8	382.2	373.4	108.1	85.6	32.5	16.1	270.3
SKAIES	37.2	22.0	6.5	0.3	0.0	7.9	0.7	1.1	0.0	0.0	0.0
IOT ELASMOBRH	37.2	22.0	6.5	0.3	0.0	7.9	0.7	1-1	0.0	0.0	0.0
RED KING CRAB	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
BLUE KING CRAB	0.0	7.7	0.0	0.0	0.0	0.0	0.0	1.1	1.1	0.0	C. 0
IANNER. BAIRDI	0.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	C. 0
TANNER. CPILIO	0.4	13.4	0.0	3.6	42.0	166.9	167.4	64.9	15.4	111.1	94.3
IANAER, HYBRID	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
DTHER CRAB	0.0	D. 0	0.0	0.0	3.2	2.9	0.0	0.0	0.0	0.9	C. 0
SNAILS	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
SHRIMP	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.0
STARFISH	36.3	75.7	0.0	4.4	34.3	36.8	27.4	10.4	9.5	22.7	18.9
SOUID	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
DCIOPUS	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
DTHER INVERTS	27.0	43.1	5.9	9.5	79.1	173.3	40.1	26.5	16.7	10.0	15.3
JOIAL INVERIS	64.0	144.9	5.9	17.6	159.1	380.0	234.9	103.0	42.8	144.7	128.5
OTHER	0.0	0.0	0.0	0.0	0.0	0.0	$=0.0$	0.0	0.0	0.0	0.0
IOIAL CATCH	541.6	1032.5	1971.4	342.4	1287.5	1179.9	780.5	621.9	261.3	537-5	1176.9

Table A-2. --Station and catch data for the chartered vessel Ocean Harvester (cont'd).

Haula	123	124	125	126	127	128	129	130	131	132	133
MONTH/DAY/YEAR	6/11/80	6/17/80	6/17/80	6/17/80	6/18/80	6/18/80	6/18/80	6/18/80	6/18/80	6/19/80	6/20/80
LAIITUDE SIARI	5860.0	5860.0	5359.8	5839.8	5819.9	5759.9	5759.7	5739.9	5719.8	57 C.C	5658.8
LONGITUDE SIART	16949.9	16910.7	16832.3	16830.1	16827.9	$168 \quad 25.8$	16748.0	16745.8	167 43. ${ }^{\text {a }}$	16742.3	16820.2
LAIITUDE END	$59 \quad 0.2$	590.9	5958.2	5830.3	5818.3	5758.4	575 B. 2	5730.4	5718.3	57 0.0	5659.5
LONGITUCE END	16946.7	16980	16833.2	16830.0	16829.0	16825.5	16748.9	16744.9	16743.5	16745.3	16823.5
LORAN SIARI	33756.40	33707.70	33647.10	33874.20	34092.50	34298.00	34190.10	34359.70	34505.10	34622.20	34757.00
LORAN STARI	49363.40	49211.10	49043.00	49135.20	49224.00	49304.50	49080.00	49128.00	49156.40	49162.90	49416.20
LORAN END	33750.10	33693.30	33667.50	33891.50	34111.70	34312.30	34206.80	34369.00	34514.70		34770.00
LORAN ENO	49350.20	49195.20	49055.50	49142.70	49237.20	49309.10	49090.70	49126.00	49156.50	49183.50	49437.90
GEAR DEPIH	62	53	46	53	66	70	68	70	73	17	80
DURATICN IN HOUAS	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50
DISTANCE FISHED	3.15	3.00	3.11	2.83	3.02	2.80	2.91	2.91	2.93	3.04	3.33
PERFDRMANCE / GEAR	$0 / 20$	0120	$0 / 20$	$0 / 20$	$0 / 20$	$0 / 20$	$0 / 20$	0120	$0 / 20$	$0 / 20$	$0 / 20$
POLLOCK	57.0	0.2	9.7	23.8	83.9	987.7	399.1	740.3	33.1	234.2	263.6
PAC CDD	211.9	134.4	65.0	96.5	189.2	253.6	135.1	91.6	31.3	55.7	17.9
PAC DC PERCH	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
OTHER RCKFISH	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
SABLEFISH	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
PAC HERFING	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
ATKA MACKEREL	0.0	0.0	0.0	0.0	0.0	0.2	0.0	0.0	0.0	0.0	0.0
SCULPINS	18.7	60.2	38:5	26.6	5.8	3.6	4.7	13.5	21.3	7.9	27.0
EELPOUTS	103.4	72.4	22.0	8.0	37.1	13.0	11.2	3.9	8.7	0.5	0.5
OTHER RNDFISH	0.3	3.2	1-1	2.2	0.2	0.0	0.2	0.0	0.0	0.0	C. 0
TOT 日OUNDFISH	391.3	270.5	136-2	157.1	316.1	1250.1	550.3	849.3	94.4	298.4	309.0
YELLJH SOLE	123.0	109.0	165.2	181.1	162.9	68.7	65.5	103.6	149.5	52.6	142.5
ROCK SOLE	0.4	0.0	13.6	1.8	3.4	11.5	1.2	15.6	2.9	2-0	1.8
FLATHEAD SOLE	2.9	0.8	3.5	0.1	2.5	2.6	4.5	11.9	5.6	1-8	1.5
alaska plaice	15.3	334.2	140.7	69.3	135.9	38.1	68.8	145.5	22.2	2.5	6.7
GREENLAND THT	3.6	0.0	0.8	0.1	. 3.6	4.4	1.3	1.4	2.0	0.5	0.3
ARRCHTOOIH FL	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3.4	2.2	4.9
PaC Halibut	11.9	2.0	0.3	0.0	5.4	19:9	0.0	0.3	0.0	0.0	0.0
OTHER FLIFISH	0.0	3.8	9.3	4.4	0.0	0.0	0.0	0.0	0.0	0.0	0.0
TOT FLAIFISH	217.1	449.7	333.4	256.8	313.7	145.1	141.3	278.4	185.6	62.3	157.7
SkATES	0.0	0.0	2.7	11.7	4.5	3.5	11.2	3.2	8.2	1.4	0.0
IGT ELASMO日RH	0.0	0.0	2.1	11.7	4.5	3.5	11.2	3.2	8.2	1.4	0.0
RED KING CRAB	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2.7
BLUE KING CRAB	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	16.3
TANNCR. BAIROI	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.6	0.0	20.0
TANNER, OPILID	122.2	96.6	85.3	302.1	16.3	2.5	4.3	0.9	7.3	141.1	461.2
IANNER, HYBRID	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	C. 0
OTHEF CRAB	$1-1$	1.4	0.9	0.9	2.5	0.2	1.8	1.1	5.2	1.6	0.7
SNAILS	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
SHîlhP	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	C. 0
STAFFISH	16.1	59.7	103.6	55.7	27.5	7.6	7.9	20.4	18.8	21.9	15.1
SQUID	0.0	0.0	C. 0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	C. 0
CCIOPUS	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
DIHER INVERTS	64.1	182.4	48.0	94.9	64.1	50.4	45.2	141.3	157.4	13.4	5.3
IOTAL INVEATS	203.6	340.1	237.8	453.6	110.9	60.7	59.2	163.7	190.3	182.9	521.4
Dther	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
TOTAL CATCH	812.0	1060.3	710.1	879.2	745.2	1467.5	762.0	1294.5	478.5	544-s	988.2

Table A-2. --Station and catch data for the chartered vessel Ocean Harvester (cont'd).

have	134	135	136	137	138	139	140	141	142	143	144
HON IH/DAY/YEAR	6/20/00	6/20/80	6/20/80	6/20/80	6/20/80	6/22/80	6/22/80	6/22/80	6/22/80	6/25/80	6/23/80
LAIITUDE SIAKI	5659.8	5640.0	5640.1	5639.9	5620.0	5640.0	570.0	5720.3	5739.9	5759.9	5020.0
LDNGITUDE SIART	16857.2	16853.0	16816.8	16739.8	16739.3	17158.0	1721.9	1725.7	17210.0	17214.0	17217.9
LAIITUDE ENO	5659.8	$56 \quad 40.6$	5640.5	5640.0	5619.7	$56 \quad 41.8$	00.0	$5\rangle 21.8$	5741.5	581.4	5821.5
LCNGITUDE END	1690.1	16850.9	16814.0	167 37-1	16742.3	17158.0	00.0	1724.1	17210.3	17212.9	17218.9
LOFAN SIARI	34890.60	34951.00	34830.00	34707.40	34775.60	34993.10	34903.00	34773.50	34609.70	34417.70	34210.30
LORAN SIARI	49662.00	49613.3 C	49379.60	49139.20	49109.30	50164.30	50181.20	50158.50	50104.80	50027.70	49937.80
LORAN END	\$4901.40	34940.30	34819.40	34698.40	34705.10	34987.70	34896.70	34766.60	34595.30	34405.70	34193.50
LORAN END	49681.60	49596-40	49362.70	49121.90	49128.60	50166.00	50181.90	50155-50	50099.40	50020.60	49931.40
GEAR DEPIH	80	102	106	43	132	150	124	108	109	104	102
DURATION IN HOURS	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50
DISTANCE FISHED	3.00	3.11	2.89	2.70	3.11	3.39	2.96	1.28	2,-94	2.89	2.94
PERFORMANCE / GEAR	0120	0/20	$0 / 20$	D / 20	$0 / 20$	0/20	$0 \% 20$	$0 / 20$	0 / 20	$0 / 20$	0/20
POLLDCK	285.9	173.5	290.7	754.6	117.4	7.3	158.5	30.4	706.6	66.3	49.5
PAC CCD	18.1	25.1	21.2	83.2	80.0	24.7	118.5	42.3	299.7	111.1	119.0
PAC OC PERCH	0.0	0.0	0.0	0.0	0.0	0.0	0.0	C. 0	0.0	0.0	C. 0
OTHER GCKFISH	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
SABLEFISH	0.0	0.0	0.0	0.7	21.3	1.2	0.0	0.0	0.0	0.0	0.0
PAC HERRING	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	C.C
atka Mackerel	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	C. 0
SCULPINS	37.3	75.4	19.3	0.4	29.2	2.0	0.0	7.3	16.5	7. 3	5.6
EELFOUTS	0.0	1.0	2.9	1.2	38.1	3.8	2.0	6.4	21.4	59.1	79.5
OTHER FNCFISH	0.2	0.1	0.0	0.0	6.6	0.1	0.0	a. 0	0.0	0.3	0.2
TOT ROUNDFISH	341.7	276.0	334.1	840.1	292.5	39.0	279.0	94.4	1124.2	244.0	253.8
YELLOH SOLE	64.5	45.4	0.7	7.9	0.0	0.0	0.0	0.2	2.5	0.1	C. 0
ROCK SOLE	2.8	1.5	0.2	0.0	0.0	0.7	0.0	0.0	3.1	0.2	C. 0 -
FLAJHEAD SCLE	1.2	6. 4	1.2	0.5	42.6	3.4	4.3	22.9	63.5	0.4	$0.3{ }^{\circ}$
ALASKA PLAICE	2.9	13.4	3.6	2.9	0.0	0.0	0.0	\% 0.9	0.0	6.9	4.0
GREENLAND TBJ	0.7	0.1	1.0	0.5	2.8	0.0	0.0	4.2	11.9	14.3	17.6
ARRCHIOCIH FL	1.6	6.4	14.6	9.1	49.8	B. 0	4.3	3.8	5.5	0.3	0.1
PAC HALIBUI	0.0	2.9	0.0	6.7	10.1	0.0	3.1	0.0	0.0	0. 0	0.7
OTHER FLIFISH	0.1	0.1	0.4	0.1	0.0	0.0	1.0	0.0	0.2	0.0	0.0
TOJ FLaifish	73.8	76.1	21.8	27-7	104.3	12.1	12.7	22.0	86.7	22.2	22.8
SKAIES	0.8	0.0	0.0	0.0	17.3	9.8	0.1	1.4	23.0	53.6	43.3
TOT ELASMOBRH	0.8	0.0	0.0	0.0	17.9	9.8	0.1	1.4	23.0	53.6	43.3
RED KING CRAE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	C. 0	0.0	$0 . \mathrm{C}$	0.0
BLUE KING CRAB	12.2	2.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
IANNER, BAIRDI	0.9	0.0	12.0	17.5	5.1	87.5	115.9	21.3	11.3	4.3	2.4
IANNER, OPILIO	194.1	197.8	76.2	55.5	4.5	0.0	0.0	19.1	15.9	0.2	0.8
TANNCR, HYERID	0.0	0.0	12.0	0.0	0.0	0.0	7.7	1.6	1.5	0.0	$0 . \mathrm{c}$
othen crab	0.0	0.5	0.9	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
SNAILS	0.0	0.7	0.0	0.0	0.0	0.0	- 0.0	0.0	0.0	0.0	0.0
SHFIMP	0.0	0.0	0.0	0.0	4.7	0.1	0.0	0.1	0.0	0.7	2-1
STARFISH	0.9	6.0	1.3	3.6	0.0	104.4	19.5	12.2	1.8	9.5	5.1
SOUID	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
UCTOPUS	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	C. 0
OIHER INYERTS	15.7	0.0	9.6	29.6	10.0	11.2	13.3	21.9	39.1	61.9	25.8
TOTAL INVERTS	224.0	207.2	112.0	106.2	24.4	203.3	156.4	76.3	69.7	76.6	36.2
Other	0.0	0.0	0.0	D. 0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
IOTAL CATCH	640.3	559.4	467.9	974.0	439.1	264-2	448.1	194.1	1303.6	396.5	356.1

Table A-2. -Station and catch data for the chartered vessel Ocean Harvester (cont'd).

HaUl	145	146	147	148	149	150	151	152	153	154	155
MONTH/DAY/YCAR	6/23/80	6/23/80	6/23/80	6/24/80	6/24/80	6/24/80	6/24/80	6/24/80	6/25/80	6/25/80	6/25/80
LaIITUDE START	$50 \quad 40.0$	5640.0	5860.0	5920.0	5940.0	5940.0	$59: 0.0$	5939.9	5920.2	5919.9	5915.9
LONGIIUDE START	17222.0	17142.5	17145.7	17149.9	17154.1	17234.0	17314.0	17351.8	17347.8	173 8.6	17229.9
LAIITUDE END	5841.5	5841.6	591.3	5921.5	5941.5	5940.1	5940.0	5938.6	5920.6	5919.7	5919.3
LGNGIICDE ENO	17220.8	17142.4	17145.4	17149.5	17154.6	17237.2	17316.9	17350.6	17344.5	17350	17227.1
LOKAl STASt	34994.10	34024.00	33792.40	33560.00	33327.00	33323.70	33311.50	33294.50	33499.70	33529.40	33549.40
LORAN START	49841-80	49783.80	49673.60	49573.20	49472.10	49547.70	49610.00	49659.20	49745.50	49701.50	49645.30
LORAN END	34978.30	34005.20	33777.70	33542.50	33309.60	33321.60	33310.00	33509.20	33498.50	33533.80	33557.40
LCFAN END	49832.50	49774.30	49668.70	49564.10	49465.10	49552.40	49614.00	49664.10	49740.40	49698.80	49644.00
gear cepih	102	91	$\theta 6$	80	77	04	95	104	110	101	88
DURAJION IN HOURS	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50
CISTANCE FISHED	3. 60	3.07	2.74	2.83	2.82	2.96	2.78	2.76	3.19	2.87	2.89
PERFORHANCE / GEAR	$0 / 20$	$0 / 20$	$0 / 20$	$0 / 20$	$0 / 20$	0/20	$0 / 20$	$0 / 20$	0120	$0 / 20$	$0 / 20$
POLLOCK	507.4	1515.6	1222.2	13.7	4.3	12.3	114.4	149.9	241.0	103.9	33.0
PAC CDD	159.7	235.6	444.3	25.0	53.9	34.1	175.6	169.8	87.5	113.1	64.4
PAC OC FERCH	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	C. 0
OIHER KCKFISH	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	C. 0
SABLEFISH	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	C. 0
PAC HEFRING	0.0	0.0	0.0	0.0	0.1	0.1	0.0	0.0	0.0	0.0	0.0
ATKA MaCKEREL	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	C. 0
SCULPINS	3.9	4.9	33.8	6.1	18.8	17.7	9.5	4.0	4.0	7.1	12.0
EELFOUTS	185.2	54.1	25.1	17.0	8.0	36.0	30.2	69.0	54.9	73.3	7.1
OTHEF RNDFISH	0.2	0.0	0.0 .	0.2	3.1	4.6	0.1	0.1	0.2	0.4	0.5
TOT ROUNDFISH	356.4	1810.2	1726.0	63.0	88.8	104.9	329.8.	392.8	387.7	297.8.	117.1
Yellca scle	0.0	29.5	10.6	9.1	16.2	2.2	0.1	0.3	0.0	0.5	C. 2
ROCK SDLE	0.2	3.2	0.0	0.1	0.1	0.2	0.0	0.5	0.0	2.4	C. 2
FLATHEAD SOLE	0.9	4.9	7.0	4.8	3.2	13.2	44.7	17.6	0.0	14.7	14.0
ALASKA FLAICE	0.8	12.0	8.9	d. 7	22.5	1.4	0.8	0.0	1.6	1.4	17.6
GREENLAND TBT	25.2	38.8	61.1	10.2	14.7	65.3	69.5	37.8	51.0	46.5	61.7
ARRCWTOOTH FL	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	C. 0
PAC HALISUT	1.0	0.0	8.1	0.5	0.0	0.0	4.2	0.0	$0-0$	0.6	C. 0
DIHER FLIFISH	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	C. 0
TOI FLAIFISH	28.0	88.5	55.6	33.3	56.7	82.2	119.4	56.1	52.6	66.0	93.7
		3.9	0.0	0.1	0.0	0.1	0.9		1.6	2.7	0.2
TOT ELASHOBRH	11.8	3.9	0.0	0.1	0.0	0.1	0.9	0.7	1.6	2-7	0.2
KEU KING CHAB	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
ELUE KING CRAB	0.0	0.0	0.0	1.4	0.0	2.3	6.0	10.9	3.4	3.2	C. 0
IANAER, DAIRDI	0.1	0.2	0.8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
TANNER, CPILID	0.0	1.6	45.4	94.3	37.2	27.2	1.0	0.2	5.0	1.8	0.1
TANNER, HYBRID	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.0
OTHEA CRAB	0.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	C. 0
SNAILS	0.0	0.0	21.2	0.0	0.0	0.0	0.0	0.0	0.2	0.0	0.0
SHRIMP	4.3	0.0	0.0	0.1	0.5	0.1	4.4	1.6	3.5	2.0	0.5
SIARFISH	21.5	27.9	105.8	15.2	12.8	17.9	5.8	11.2	5.4	9.1	37-2
SQUID	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
OCICPUS	0.5	0.0	0.0	0.0	0.0	0-0	0.8	0.0	0.0	0.1	1. 6
OTHER INVERTS	25.1	13.1	44.0	15.6	20.4	13.9	17.0	24:0	21.0	22.9	80.6
IDTAL INVERTS	52.8	42.9	218.2	126.6	78.3	61.5	35.0	48.0	38.6	39.2	120.1
OTHER	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	C. 0
IOTAL CAICH	949.0	1945.5	2039.8	223.1	224.3	240.7	485.1	497.5	480.5	405.7	331.1

Table A-2.--Station and catch data for the chartered vessel Ocean Harvester (cont'd).

HAUL \%	156	157	150	159	100	161	162	163	164	165	166
MONTH/CAY/YFAR	6/25/80	6/25/80	6/26/80	6/26/80	6/26/80	6/26/80	6/26/80	6/21/80	6/27/80	6/27/80	6/27/80
Latituoe start	5859.9	5059.8	5859.8	5340.1	5940.0	5\% 20.0	57 60.0	5739.9	5719.8	5659.5	5639.7
LONGITUDL START	17226.0	1734.9	17343.0	17337.8	1730.3	17256.1	17251.8	17248.1	17243.0	17239.3	17234.4
LAIITUDE ENO	590.3	5859.3	5858.3	5840.6	5838.5	$58 \quad 13.4$	5759.0	5738.5	5718.5	0 0.0	5639.1
LONGITUDE END	17229.0	1737.8	17342.3	17335.1	1731.5	17256.5	17249.4	17246.9	17241.5	0 O.C	17234.2
LORAN START	33773.30	33745.40	33709.50	33908.10	33954.80	34158.40	34352.20	34529.50	34648.20	34915.00	34913.60
LORA.V START	49744.00	49794.70	49832.70	49913.70	49883.80	49959.70	50047.80	50113.20	50159.20	50179.80	50172.30
LORAN END	33767.70	33748.00	33725.30	33906.70	33958.20	34173.10	34365.40	34543.50	34700.00	34829.20	34919.70
LORAN END	49746.50	49800.30	49838.80	49909.60	49891.70	49976.70	50050.50	50117.10	50161.30	50181.00	50170.60
GEAF DEPIH	99	100	119	126	113	110	110	119	115	117	159
DURAIICA IN HDUES	0.50	0.50	0.50	0.50	0.50	C. 50	0.50	0.50	0.50	0.50	0.50
DISTANCE FISHED	2.89	2.93	2.91	2.83	2.98	2.96	2.98	2.94	2.78 ${ }^{\prime}$	2.96	3.02
PERFORMANCE / GEAR	$0 / 20$	$0 / 20$	$0 / 20$	0/20	$0 / 20$	$0 / 20$	$0 / 20$	$0 / 20$	$0 / 20$	$0 / 20$	0120
POLLOCK	$312 . \mathrm{e}$	448.7	88.8	196.9	144.8	46.7	420.6	10.7	170.3	186.0	84.3
PAC COD	186.2	317.4	82.5	95.5	164.9	99.2	152.4	17.0	145.9	10.6	92.6
PAC OC FERCH	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
OTHER RCKFISH	0.0	0.0	0.0	0.0	0.0	0.0	C. 0	0.0	0.2	0.0	0.7
SABLEFISH	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
PAC HEREING	0.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
ATKA MACKEREL	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	C. 0
SCLLPINS	5.7	8.8	10.0	5.0	12.5	15.4	15.6	23.0	20.0	0.0	7.8
EELPOUTS	40.3	95.2	33.8	45.9	49.5	52.1	22.9	25.9	24.5	1.1	3.4
CIHER RNDFISH	0.1	0.1	0.4	0.5	0.2	0.3	0.7	2.6	4.5	0.6	7.0
TOT ROUNDFISH	545.3	860.2	215.5	343.8	371.9	213.7	612.1	19.2	365.4	198.2	196.0
YELLOH SOLE	8.4	0.2	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.0	0.0
ROCK SOLE	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0. 1	0.2	0.1	3.0
flathead scle	22.0	0.1	0.1	0.0	0.0	0.0	0.0	2.9.	4.1	1.1	0.1
alaska plaice	0.2	0.0	0.0	0.0	1.4	1.5	0.9	0.0	0.0	$0.0{ }^{\circ}$	0.0
GREENLAND IBT	54.7	104.6	24.1	10.9	14.9	28.8	29.6	0.6	0.4	0.0	0.7
ARROWTODIH FL	0.0	0.0	0.0	0.0	0.0	0.5	34.1	4.5	1-4	3.7	9.5
PaC halibut	0.5	0.4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	C. 0
OTHEII FLTFISH	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.4
JOJ FLAJFISH	85.7	105.2	24.2	10.9	16.3	30.9	64.7	8.2	6.0	5.0	13.7
SKAIES	0.1	12.2	15.1	16.3	10.3	17.0	11.9	14.3	7-3	0.5	11.9
TOT ELASMOGRH	0.1	12.2	15.1	16.3	10.8	17.0	11.9	14.3	7.3	0.5	11.9
RED KING CRAB	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	C. 0
BLUE KING CRA日	0.0	1.6	0.0	0.0	0.0	0.0	0.0	C. 0	0.0	0.0	0.0
TANAERE GALRDI	0.5	1.2	1.1	18.4	5.2	12.7	14.3	101.6	24.9	8.6	1.0
TANNER, OPILIO	4.3	1.4	7-3	3.9	0.8	0.8	42.6	7.7	1.6	0.0	0.0
JANNER. HYERID	0.0	0.7	0.0	0.0	0.0	C. 0	0.6	0.0	0.0	0.2	0.0
OTHER Cfita	0.0	0.0	0.0	0.0	0.0	0.7	0.0	0.0	0.0	0.0	0.0
SNAILS	0.0	0.1	0.0	0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.0
SHFIMP	3.9	5.8	4.7	0.0	2.9	0.0	0.0	0.0	0.0	0.0	0.0
STARFISH	18.3	11.7	11.2	3.8	2.0	5.2	13.7	6.2	2.3	0.0	1.3
SQUIO	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1
OCTCPUS	1.1	0.5	0.0	0.0	0.0	1.5	0.0	0.0	1.3	0.0	38.1
OTHER INVERTS	19.9	45.8	28.9	34.5	60.4	50.3	39.2	40.1	32.6	2.1	14.5
TOTAL INVERTS	47.9	68.6	33.1	60.5	72.0	11.2	110.5	155.6	62.7	11.0	55.0
OTHEA	0.0	0.0	0.0	0.0	0.0	0.0	0.0	C. 0	0.0	0.0	0.0
IOJAL CAICH	679.0	1046.4	307.9	431.5	471.0	332.8	799.3	257.3	441.4	214.6	27E.6

Table A-2. --Station and catch data for the chartered vessel Ocean Harvester (cont'd).

HAUL	167	168	109	170	171	172	173	174	175	176	177
HONTH/DAY/YEAR	$7 / 4 / 80$	$714 / 80$	$7 / 4 / 80$	714130	1/4/80	$715 / 80$	7/5/80	7/5/80	7/5/80	7/7/80	7/7/80
LAIITUDE START	60 C. 5	5960.0	5959.9	5959.9	$60 \quad 0.1$	$60 \quad 20.0$	6020.1	6020.1	6020.2	6019.9	6040.1
LONGITUDE START	17157.6	17117.7	17037.5	16957.5	16918.0	16920.2	1702.2	17040.0	17122.1	1724.3	1727.2
LAIITUDE ENO	602.1	600.8	$60 \quad 0.1$	5959.1	$60 \quad 0.3$	6019.2	6019.5	6020.4	6021.4	6018.5	6040.6
LGNGIJUCE END	17156.9	17115.1	17034.0	16954.4	16915.9	16922.9	170 5.1	17043.2	17123.4	1725.2	1729.9
LORAN START	33088.40	33082.90	33061.50	33031.00	32987.90	32747.60	32788.60	32813.00	32843.40	32864.60	32632.10
LORAN SIART	43365.70	49280.90	49173.70	49051.90	48917.70	48822.40	49961-20	49073.70	49104.20	49282.90	49187.10
LQRAN ENO	33070.10	33071.70	33057.50	$3.303 / .40$	32982.70	32760.20	32798.40	32917.70	32829.60	32280.50	32626.60
LORAN END	49359.90	49269.80	49162.90	49046.00	48906.40	48835.70	48973.30	49081-10	49181-10	49291.70	49190.00
gear depin	E6	70	64	55	44	42	51	60	66	59	62
DUFAJION IA HOUFS	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50
DISTANCE FISHED	2.98	2.91	3.26	3.15	2.70	2.87	2.69	2.94	2.57	2.63	2.69
PERFORMANCE / GEAR	$0 / 20$	0120	0120	$0 / 20$	$0 / 20$	0/20	$0 / 20$	$0 / 20$	$0 / 20$	$0 / 20$	$0 / 20$
POLLOCK	0.5	2.6	1.5	4.6	17.7	89.8	0.7	1.9	0.1	0.1	0.8
PAC COD	28.6	39.9	24.9	31.1	37.2	22.7	33.8	15.4	3.6	25.4	0.5
PAC DC PERCH	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
CTHER RCKFISH	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
SABLEFISH	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	C. 0
PAC HERPING	0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	C. 0
atka Mackerel	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	C. 0
SCULPINS	115.3	23.4	15.9	116.2	105.6	88.0	25.5	17.2	50.3	223.5	8.0
tELPOUTS	21.3	15.1	43.2	24.7	1.0	1.1	42.9	100.8	29.9	21.5	343.1
OTHEG RNDFISH	0.8	2.0	1.5	0.4	0.0	4.9	2.4	2.6	0.3	2.8	0.7
TOT ROUNDFISH	166.5	83.1	87.0	177.0	162.1	206.5	105.2	137.9	84.4	273.3	353.1
YELLOW SULE	8.6	1.8	23.1	321.4	57.6	49.4	74.8	22.7	4.5	1.1	0.1
ROCK SOLE	0.2	0.2	0.0	11.9	0.1	0.7	1.1	G. 0	0.0	0.0	0.0
flathead sole	2.0	6.8	4.5	0.0	1.6	0.5	1.8	2.5	0.7	1.1	2.7
alaska plaice	24.9	5.4	21.8	421.7	45.6	9.1	107.0	44.5	19.5	18.1	0.7
GREENLANE IBt	2.5	5.9	6.6	0.3	1.3	0.9	4.1	4.1	0.5	0.2	5.2
ARRCWTDOIH FL	0.0	0.0	0.0	C. 0	0.0	0.0	0.0	0.0	0.0	0.0	C. 0
PAC HALIEUT	0.0	2.2	0.0	U. 0	0.0	0.0	0.9	0.0	0.0	0.0	0.0
OTHER FLIFISH	0.1	0. 0	0.0	0.0	0.2	1.5	0.0	0.1	0.0	0.0	C. 0
TOI FLAIFISH	38.4	22.4	56.0	755.3	106.9	62. 1	189.8	73.8	25.2	20.6	6.8
SKAIES	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	$\mathrm{C}=0$
ICI ELASMCBRH	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
RED KING CRAB	0.0	0.0	0.0	0.0	0.0	6.8	3.2	0.0	0.0	0.0	0.0
BLUE KING CRAB	1.4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	17.2	0.0
TANAER, BAIROI	0.0	0.0	0.0	0.0	0.0	0.0	0.0	C. 0	0.0	0.0	0.0
TANNER. OPILIO	40.4	108.6	99.8	117.9	4.1	1.1	113.4	65.8	117.0	209.6	130.6
IANNER, HYHRID	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	C. 0
OTHER CRAB	31.3	8.2	1.4	159.4	189.3	224.8	26.5	2.5	0.5	62.1	0.1
SNAILS	29.0	19.5	8.2	30.1	80.3	23.4	24.2	6.2	6.1	18.7	0.3
SHRIMP	0.2	0.1	4.8	0.0	0.1	0.2	0.0	0.0	0.0	0.2	0.0
STARFISH	1.2	5.9	2-9	14.3	144.2	173.7	38.1	10.0	3.2	4.5	13.2
Souid	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
OCICPUS	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
OTHER INVEFTS	0.3	0.1	0.0	9.7	25.4	56.4	2.5	0.1	0.2	75.6	0.0
toital inveris	103.9	142.4	117.1	331.4	444.2	486.4	207.9	84.5	127.0	388.0	144.2
OTHER	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
IOTAL CAICH	309-0	247.9	260.1	1263.7	713.3	755.0	503.0	296.3	236.5	681.9	506.0

Table A-2.--Station and catch data for the chartered vessel Qcean Harvester (cont'd)

haul	178	179	100	141	102	183	184	185	186	187	188
MONTH/DAY/YEAR	711180	117180	7/7/80	7/1/80	$7 / 8 / 80$	$718 / 80$	$118 / 80$	$718 / 80$	$7 / 8 / 80$	$7 / 9 / 80$	1/9/80
Latitude start	6039.3	6039.8	6040.0	6539.9	6039.9	6040.0	610.2	5120.3	6139.8	6120.0	610.0
LONGITUDE START	17250.5	17328.3	174 3.1	17456.3	17536.2	17621.9	17627.3	17618.2	17628.2	17658.4	17658.8
LATITUDE ENO	6040.0	$60 \quad 39.8$	6037.8	6039.6	6040.2	6041.7	611.5	5121.9	61 58.4	6118.8	610.8
LONGITUDE END	17253.7	173 30.8	17411.5	17459.5	17539.9	17622.6	17629.5	17618.9	17628.8	1770.2	1772.5
LORAN STARI	32656.10	32650.20	32670.90	32861.90	32657.50	32648.80	32461.70	32274.30	32095.90	32282.30	32461.20
LORAN START	49277.70	49341.70	49412.00	49466.20	49511.20	49555.50	49480.10	49390.00	49322.60	49432.00	49509.70
LOAAN END	32649.60	32667.50	32669.10	32665.00	32654.30	32632.30	32449.30	32259.50	32109-20	32293.10	32453.90
LORAN END	49296.50	49355.00	49417.40	49471.50	49513.90	49549.30	49476.90	49384-30	49328.90	49438.30	49509.90
GEAF DEPIH	44	64	86	97	108	117	112	10 E	106	111	119
DUFATION IN HCUFS	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50
DISTANCE FISHED	3.19	2.59	3.20	2.98	3.39	3.26	3.17	3.04	2.69	2.72	3.63
PERFORMANCE / GEAR	$0 / 20$	$0 / 20$	- / 20	D / 20	- / 20	$0 / 20$	$0 / 20$	- / 20	0 / 20	$0 / 20$	0/20
POLLOCK	3.2	0.2	3.2	42.6	141.5	94.6	113.8	61.5	39.0	30.2	58.7
PAC COO	24.0	0.0	5.4	46.3	79.4	85.7	61.2	38.6	71.9	72.6	66.0
PAC OC PERCH	C. 0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
CTHER FCKFISH	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	C. 0
SABLEFISH	C. 0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	C. C
PAC HERAING	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
ATKA HaCKEREL	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.5
SCULPINS	117.7	84.5	106.2	26.4	7.3	4.2	2.4	0.9	0.0	1.4	4.3
EELFOUIS	33.2	2.7	16.3	103.6	114.8	76.4	76.0	20.4	41.5	106.5	22.2
Ctier rncfish	1.3	0.2	0.9	0.7	0.4	0.7	0.6	0.3	0.1	0.6	1.1
TOI ROLNCFISH	179.4	87.6	132.1	219.6	343-3	261.6	254.0	121.6	152.6	211.2	152.8
YELLAn solf	36.7	1-6	0.5	0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.0
HCCK SDLE	0.0	0.0	0.0	0.1	0.1	0.0	0.0	0.5	0.0	0.0	0.0
FLATHEAD SCLE	9.5	0.7	2.0	12.9	153.3	29.9	96.2	22.7	14.3	105.7	36.1
ALASKA PLALCE	80.3	1.4	0.0	0.0	0.5	0.0	0.0	0.0	0.0	0.0	0.9
GREENLAND TBT	0.5	0.0	11.8	51.7	155.1	190.1	180.3	54.9	83.0	204.1	275.8
ARRCWIOCTH FL	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
PaC. HALIBUT	0.0	0.5	0.4	0.3	1.3	0.4	1.3	0.0	7.0	0.4	8.7
OTHER FLIfISH	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
TOT FLAIFISH	127.0	4.1	14.7	65.1	310.5	220.4	277.7	78.0	104.3	310.2	321.6
SKAIES	0.0	C. 0	0.0	0.0	4.1	18.1	0.5	4.5	0.0	0.1	6.8
IOJ ELASHOBRH	0.0	0.0	0.0	0.0	4.1	18.1	0.5	4.5	0.0	0.7	6.8
RED KING CRAB	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
BLUE KING CRAB	12.7	5.4	4.1	0.0	0.0	0.0	0.0	0.9	0.2	0.9	1.4
IANNER, BAIRDI	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	C. 0
IANNLR, EPILIO	6.8	21.3	34.5	5.9	1.1	256.3	8.2	76.2	85.3	2.5	72.1
IANNER. HYBRID	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	C. 0
OTHER CRAB	16.3	10.8	0.3	0.5	0.0	1.8	0.0	0.1	0.3	0.0	0.5
SHAILS	11.3	2.7	0.0	0.3	12.3	28.5	11.5	0.5	0.0	5.2	9.2
SHRIMP	0.2	0.0	0.2	0.5	4.2	4.2	1.3	0.0	0.1	1.1	3.1
STAFFISH	6.6	0.2	2.7	0.7	4.3	13.8	0.4	4.5	0.3	2-8	7.6
SQUID	C. 0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	C. 0
OCICPUS	0.0	0.0	0.0	0.0	10.0	2.7	0.5	0.7	0.0	2.9	0.5
OTHER INYERIS	0.2	0.7	0.0	4.3	0.7	0.3	0.7	0.1	0.1	0.1	0.3
TOTAL INVERTS	54.1	41.1	41.8	12.1	33.1	307.6	22.4	83.1	86.4	16.2	94.7
OTHER	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	C. 0
TOJAL CAICH	360.6	132.8	188.6	296.8	691.0	807.7	554.6	287.2	343.2	538.3	575.8

Table A-2.--Station and catch data for the chartered vessel Ocean Harvester (cont'd).

Table A-2.--Station and catch data for the chartered vessel Ocean Harvester (cont'd).

havi	202	203	204	205	206	207	208	209	211	212	213
MONIH/DAY/YEAR	7/12/80	7/12/80	7/12/80	7/12/80	7/13/80	7/13/80	7/15/80	7/13/80	7/13/80	1/14/80	7/14/80
LaIIJUDE SIAKI	6020.0	5960.0	$60 \quad 0.1$	6020.1	6019.7	5959.9	600.1	óo 19.8	5759.3	590.1	5839.9
LONGITUDE STAFT	17523.0	1:5 15.9	17436.0	17442.5	1744.2	17356.2	11318.2	17323.7	17238.0	1675.1.	1671 C 0
LAIITUDE ENO	6018.2	5959.7	$60 \quad 1.8$	6020.6	6018.4	5960.0	60 1.1	6019.6	5959.3	5858.5	5839.5
LONGIIUDE END	17522.6	17512.3	17436.6	17439.6	1743.3	17352.4	17316.4	17321.1	17235.3	$16 \bar{i} 5.1$	1677.8
LDRAN START	\$2853.40	33049.60	33067.00	32863.70	32874.60	33084-20	33091.60	32877.00	33098.40	33464.70	33687.90
LORAN SIARI	49531.20	45658.20	49617.70	49536.90	49490.20	49571.60	49517.30	49430.30	49451.90	48601.20	48J07-00
LORAN END	32370.60	33054.50	53050.20	32859.00	32888.80	33084.60	33002.00	32879.60	33101.40	33482.70	33687.00
LORAN EAD	49580.20	49656.20	49611.10	49531.10	49495.d0	49566.30	49510.00	49427.30	49449.30	48607.70	48696.20
gear depth	113	117	100	102	91	97	75	60	60	37	42
DURATION IN HOUFIS	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50
DISTANCE FISHED	3.30	3.41	3.11	2.87	2.54	3.54	2.43	2.43	2.65	2.94	2.30
PERFORMANCE / GEAR	0/20	0120	$0 / 20$	$0 / 20$	0 1 20	0/20	$0 / 20$	0120	$0 / 20$	$0 / 20$	$0 / 20$
POLLOCK	333.5	448.8	477.8	164.1	27.7	625.3	1.6	0.5	2.7	0.4	0.7
PACCOD	132.7	62.6	705.7	170.3	44.5	409.1	3.2	4. 1	9.5	10.9	19.3
PAC OC PERCH	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
OTHEH RCKFISH	C. 0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
SABLEFISH	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	C. 0
PAC HERRING	0.0	0.0	0.0	0.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0
ATKA MACKEREL	0.0	0.0	0.0	0.0	0.0	c. 0	0.0	0.0	0.0	0.0	C. 0
SCULPINS	2.6	7.3	3.6	2.7	20.5	5.0	70.5	93.6	158.8	98.2	116.1
EELPOUTS	17.3	61.2	32.0	6.8	14.5	29.0	9.5	7.8	10.7	0.2	0.0
CTHEK RNCFISH	0.2	0.1	0.3	3.9	4.0	0.5	7.9	2.3	0.0	46.1	36.8
IOT ROUNDFISH	546.4	620.0	1219.5	348.0	111.2	1068.9	92.8	108.2	181.7	155.8	172.9
Yelioh sole	0.0	0.2	0.1	0.1	0.0	0.0	0.5	C. 2	2.0	550.7	506.4
ROCK SOLE	0.0	0.0	0.0	1.1	0.0	0.0	0.0	C. 0	0.0	3.4	4.5
flathead sole	46.3	5.7	51.5	29.0	5.9	37.0	2.0	0.0 :	0.1	0.2	0.2
ALASKA PLAICE	0.0	0.0	0.8	0.0	0.0	1.4	0.5	18.1	2.7	197.3^{\prime}	73.0
GREENLAND JBI	117.9	171.5	117.9	82.1	7.3	53.1	5.0	1-1	0.2	0.0	C. 0
ARROWIOCIH FL	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	C. 0
PAC HALIBUI	0.0	0.0	0.0	0.0	0.3	1.5	0.0	0.0	0.0	0.6	1.0
OTHER FLIFISH	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	10.4	16.8
IOJ FLAIFISH	164.3	178.1	170.3	112.4	13.2	92.9	7.9	19.5	5-1	762.7	602.0
SMAIES	11.3	9.1	0.0	0.0	0.1	0.5	0.2	0.3	0.1	0.0	16.3
IOT ELASMO日R	11.3	9.1	0.0	0.0	0.1	0.5	0.2	0.3	0.1	0.0	16.3
RED KING CRAB	C. 0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
BLUE KING CRAB	0.0	6.8	16.8	0.9	3.2	7.3	1.8	112.9	5.0	0.0	0.0
IANSER, BAIRDI	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
TANNER. OPILIO	50.3	46.7	1.8	0.2	276.2	6.8	121.1	156.0	30.8	0.9	2.3
TANAER, HYGRID	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
OTHER CSAB	0.0	0.0	0.0	0.0	0.0	0.1	35.4	7.9	7.8	5.4	50.6
SHAILS	28.1	22.9	10.2	0.6	0.0	0.3	12.7	22.4	3.5	11.4	54.4
SHFIMP	1.8	3.5	5.2	24.0	0.3	2.3	0.1	1.1	0.0	0.1	0.0
STARFISH	12.7	32.7	1.5	4.5	0.0	0.0	0.5	38.1	3.6	249.7	3E. 1
SOUID	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	C. 0
CCICPUS	2.5	3.2	0.8	0.7	0.0	0.0	0.5	0.0	0.0	0.0	C. 0
OTHER INVEFIS	1.0	1.5	12.2	1.0	0.0	0.0	0.9	11.0	0.2	0.1	1.6
JOIAL INYERTS	96.4	117.2	48.6	32.0	219.7	16.8	172.9	349.6	51.0	267.7	144.9
OTHER	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
TOIAL CAJCH	818.5	924.3	1438.4	492.4	404.2	1179.0	273.8	477.6	237.9	1186.2	936.1

Table A-2.--Station and catch data for the chartered vessel Ocean Harvester (cont'd).

HAUL	214	215	216	217	219	219	220	222	223	224	225
MONJH/DAY/YEAK	7/14/80	7/15/80	7/15/80	7/15/80	7/15/80	7/15/80	7/15/80	7/16/80	1/16/80	7/16/80	7/16/80
LAIITUDE START	5840.0	5060.0	5840.0	54 40.0	5839.9	5840.0	5840.0	5340.1	590.1	5920.0	5919.8
LONGITUDE STARI	16630.6	$1 \in 545.2$	16549.7	16511.4	16434.5	16354.6	16315.0	16235.2	16315.1	16350.2	16425.4
Latitude Enio	5841.1	- 5658.5	5941.5	5840.3	5839.1	5840.1	584103	5842.0	591.5	5921.5	5918.6
LONEITUEE END	1662 c 3	16545.2	16548.0	$165 \quad 6.2$	$16432 . J$	16351.9	16313.5	15236.6	16516.9	16351.6	16427.9
LORAN STARI	33588.00	33280.90	33483.30	33386.20	33294.60	33196.60	33102.90	33011.40	32936.40	32835.10	32910.60
LORAN SIARI	48479.80	48154.10	48237.40	48006.00	47750.10	47533.30	47286.40	47036.90	47251.10	47439.30	. 47643.50
LCRAN END	33571.40	33295.10	33467.40	33375.20	35295.40	33189.20	33088.50	32999.40	32920.70	32024.50	32927.50
LORAN END	42463.00	48158.80	4E226.4C	47985.90	47766.30	47516.10	47275.00	47043.90	47270.10	47444-8C	47660.80
gEar depth	40	27	35	38	37	31	27	35	18	18	20
DUFATICA IA HDURS	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50
DISJANCE FISHED	3.00	2.70	2.85	3.13	2.63	2.67	2.89	3.83	3.06	3.02	3.30
PERFDRMANCE / GEAR	$0 / 20$	$0 / 20$	$0 / 20$	$0 / 20$	$0 / 20$	0 1 20	$0 / 20$	0/20	$0 / 20$	0120	$0 / 20$
PDLLOCK	3.0	0.1	3.2	0.0	0.1	0.2	0.0	0.1	0.0	0.1	0.0
PAC COD	23.4	0.1	0.6	3.6	0.2	0.1	1.6	0.0	0.0	0.0	C. 0
PaC OC PERCH	C. 0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	C. 0
OTHER RCKFISH	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
SABLEFISH	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	C. 0
PAC HERRING	0.0	0.1	0.0	0.0	$0.1)$	0.0	0.2	1.1	0.0	0.0	0.0
ATKA MaCKEREL	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	C. 0
SCULPINS	159.8	13.4	18.7	31.8	10.3	26.5	25.7	0.5	2.9	0.0	2.6
EELPDUTS	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
OTHEF RNDFISH	118.4	3.7	14.2	11.4	5.1	4.4	3.6	11.7	8.7	7.4	7.1
TOI RQUNEFISH	304.5	17.5	96.8	46.8	15.7	31-3	31.1	13.4	11.6	7-5	9.7
YELLDH SOLE	1175.1	164.4	551.4	1219:3	445.2	234.3	865.4	275.6	110.4	13.4	43.5
ROCK SOLE	2. 1	15.9	11.2	0.7	13.5	34.9	10.8	1.4	0.0	0.0	0. 0
FLAIHEAD SOLE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	c. 0
alaska plaice	136.1	25.2	68.1	76.2	64.6	61.5	21.9	0.0	2.3	1.8	1.7
GREENLAND TBT	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
ARRCHIOOTH FL	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	C. 0
PAC HALIAUT	1.3	0.0	1.2	4.9	0.0	18.8	25.5	0.0	0.6	0.0	0.1
OTHER FLIFISH	19.9	15.0	35.1	0.9	3.2	3.2	5.4	22.2	7.3	0.6	6.6
TOT FLATFISH	1334.4	220.4	667.0	1302.2	526.5	352.7	929.0	299.1	120.6	15.8	52.0
SKATES	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	C. 0
TOT ELASMOERH	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	C. 0
RED KING CHAU	0.0	0.0	0.1	0.0	2.3	0.0	0.0	0.0	0.0	0.0	C. 0
BLUE KING CRAB	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
TANAER. GAIRDI	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	C. 0
TANNER. OPILID	0.9	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	C. 0
TANNER, HYBRID	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	C. 0
CTHER CFAB	17.9	8.5	12.3	5.7	21.3	15.0	9.1	1.6	2.4	3.6	1.6
SNAILS	3.8	2.0	2.4	0.0	0.9	0.4	0.0	0.0	0.1	0.0	C. 0
SHHIMP	0.0	0.1	0.0	0.0	0.0	0.0	0.1	0.0	0.1	0.2	0.0
STAFFISE	196.3	273.1	303.4	297.6	382.9	321.1	228.3	10.7	53.8	66.7	57.5
SQUID	0.0	0.0	C. 0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Ocicpus	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	C. 0
OTHER INVEFTS	0.0	0.1	0.2	1.1	2.5	0.5	0.1	0.4	0.2	0.0	0.1
TOTAL INVERTS	218.9	283.8	318.5	304.3	410.3	336.9	237.7	12.7	56.5	70.5	59.2
JTHER	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
IOIAL CAJCH	1857.9	521.7	1082.3	1653.3	952.5	720.9	1197.7	325.2	188.6	93.8	120.8

Table A-2.--Station and catch data for the chartered vessel Ocean Harvester (cont'd).

HAUL J	226	227	228	229	230	231	232	233
MONTH/DAY/YEAR	7/16/80	7/17/80	7/17/80	7/17/80	7/17/80	7/17/80	7/17/80	7/17/80
LATITUDE SIARI	5y 0.0	5920.0	59 20.0	5920.0	5920.0	5919.9	5939.9	5940.2
LDNEITUCE STAft	16430.1	16510.3	16547.3	16626.6	1677.3	1674.5	16624.8	16544.5
LAIITUDE END	590.5	$59 \quad 20.3$	5920.1	5920.8	5921.4	59 -9.1	59 38.4	Ј9 41.1
LCNGITUDE END	16432.1	16513.2	16550.6	16629.4	1679.7	1672.0	16624.9	16546.2
LORAN STARI	33014.70	33005.10	33084.80	33167.70	33253.00	33024.30	32950.50	32968.70
LORAN SIARI	47713.70	47694.60	40106.40	48319.60	48535.20	48438.10	48240.10	43029.10
LDFAN END	33105.20	33008.00	33090.60	33165.80	33241.50	33028.80	32966.80	32862.20
LCFAN END	47726.30	47915.50	48124.20	40332.10	48539.30	48429.10	48245.90	49035.30
GEAR DEPIH	26	18	22	26	29	29	27	22
DURAIIDN IN HOURS	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50
DISIANCE FISHED	2.78	2.91	3.13	3.02	3.15	2.80	2.74	2.37
Performance / Gear	$0 / 20$	$0 / 20$	0/20	$0 / 20$	$0 / 20$	$0 / 20$	$0 / 20$	$0 / 20$
POLLDCK	0.1	0.0	0.1	0.1	0.0	0.1	0.0	0.1
PAC COD	0.0	0.5	0.5	1.1	0.0	0.0	0.3	0.1
PAC DC PERCH	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
OTHER RCKFISH	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
SABLCTISH	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
PAC HERFING	0.1	0.0	C. 0	0.5	0.0	0.0	0.0	0.0
atka mackefel	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
SCULPINS	1.9	3.9	10.9	15.6	8.7	31.3	0.5	2.2
EELPOUTS	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
OTHER RNDFISH	32.7	10.1	28.1	11.5	0.9	1.4	9.7	7.2
IOT ROUNDFISH	34.8	14.4	39.6	28.8	9.9	32.8	10.5	9.7
YELLOh SOLE	43.5	93.0	159.4	122.2	226.8	234.5	10.9	19.1
ROCK SOLE	0.0	0.0	0.0	0.9	0.3	0.7	0.0	0.0
Flathead scle	0.0	0.0	0.0	0.0	0.7	0.0	0.0	0.0
alaska plaice	0.9	2.3	6.6	5.0	13.2	20.2	0.0	0.9
GREENLAND TBT	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
ARRCNICCIH FL	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
PAC HALISUT	1.1	1.7	0.4	2.1	0.5	5.5	7-8	7.3
OTHER FLIFISH	0.3	2.4	6.4	11.3	11.2	6.9	4.1	6.6
TOT FLAIFISH	45.9	99.3	172.7	141.6	252.7	267.8	22.8	33.8
SKAIES	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
TOT ELASMOBRH	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
FED KING CRAE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
GLLE KING CRAB	0.0	0.0	0.0	0.0	0.0	0.0	1.8	0.0
JANNER. BAIRDI	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
TANMER. CPILID	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
IANNER. HYBRID	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
OTHER CRAB	17.2	1.8	2.6	8.2	3.3	2.7	1.0	0.9
SNAILS	0.0	0.0	1.5	2.5	0.3	0.7	0.0	0.7
SHRIMP	0.0	0.0	0.0	0.0	0.1	0.0	0.2	0.1
STAFFISH	69.2	3.4	107.0	118.9	203.9	144.0	39.2	96.9
SQUID	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
OCIOPUS	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
OTHER INVERTS	0.5	1.9	0.4	0.1	0.1	0.0	0.2	0.0
TOTAL INVERTS	87.3	7.1	111.5	129.7	208.1	147-5	42.5	98.6
OTHER	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
IOTAL CATCH	168-0	120.9	323.8	300.1	470.7	448.0	75.8	142.1

Appendix B

Rank Order of Relative Abundance for Fish and Invertebrates

Appendix B contains a computer listing of all fish and invertebrates caught during the 1980 demersal trawl survey ranked in order of relative abundance (kg/ha).

List of Tables

Table

Table B-1.--Rank order of fish and invertebrate taxa by relative abundance (kg/ha) (cont'd).

Table B-1.--Rank order of fish and invertebrate taxa by relative abundance (kg/ha) (cont'd).

fania	SPECIEAS	$\begin{aligned} & \text { MEAN CPUEE } \\ & \text { (KG/AA) } \end{aligned}$	$9 J$ PER *---こCi4FIDENC	I IS =--*	PROPORTION	cumulitive PFOPORTION	Name.
av	71764	10.04104	0.02004	0.06205	0.00021997	0.99602366	volutopsius hiddendorafil
81	22201	0.03432	0.02154	0.05509	0.00020536	0.99622902	LIPARIS SP
82	10200	4.03765	10.01978	0.05553	0.00020120	0.99643062	rex sole
a3	24189	0.03547	0.01270	0.05825	0.00019011	0.99662092	polar eelpout
84	00472	0.03296	0.00286	0.06306	0.00017663	0.99679156	alfutian skate
85	21380	0.03114	0.03000	0.06245	0.00016690	0.99696445	pacific staghorn sculpin
86	82000	0.03109	0.03900	0.07957	0.00016663	0.99713109	brisingella pusilla
67	82510	0.92902	11.0500:	0.07682	0.00015555	0.99728663	green sea urchin
88	30420	0.02557	0.00000	0.06692	0.00013703	0.99742368	NORTHERN ROCKFISH
89	68571	0.02505	0.10000	0.05024	0.00013430	0.99755796	hyas crab (rounded spined)
so	72751	0.02483	0.01505	0.03460	0.00013306	0.99769102	LYRE Whelk
11	23010	9.02438	0.01105	0.03170	0.00013065	0.93782167	f.ulachon
92	22200	0.01627	0.01048	0.02606	0.00009794	0.99791962	SNAILFISH UNIDENT
93	83000	c.01814	0.00362	0.03267	0.00009724	0.99801686	beittiestarfish unioent
94	B 2500	0.01743	0.00066	0.03421	0.00009343	0.99811029	sea ufchin unident
95	71753	0.01699	0.03000	0.04133	0.00009104	0.99820133	pyrulafusus deformis
96	21572	0.01556	0.00402	0.02110	0.00008339	0.99628472	PaCIfic sandfish
97	21001	0.01496	0.00000	0.03471	0.00008016	0.99836489	SNAIL (GAStropod) EGGS
90	20322	0.01366	0.90000	0.03288	0.00007334	0.99843822	bering holffish
99	E5010	0.01303	0.000010	0.03463	0.00006983	0.99850805	cucumaria japonica
100	66000	0.01282	0.00126	0.02437	0.00006869	0.99857674	SHRIMP UNIDENT
201	21725	0.01259	0.100536	0.01981	0.00006746	0.99864420	afctic cod
102	22204	0.01209	0.00193	0.02224	$0.000064 \mathrm{Tr}^{\circ}$	0.99870897	maraled snailfish
103	12752	0.11163	0.00700	0.01626	n.00006231	0.9987712 E	silky hhfelk
104	98310	0.01119	0.03504	0.01734	0.00005999	0.99883127	APLIDIUM SP
105	71732	0.00963	0.00554	0.01371	0.0000515\%	C.94808266	BERINGIUS BERINGII
100	21345	0.00935	0.001907	0.02485	0.000015012	0.99693298	lungfin ifish lord
107	20061	0.00831	0.00520	0.01142	0.00004455	0.99897153	bering Poacher

Table B-1.--Rank order of fish and invertebrate taxa by relative abundance (kg/ha) (cont'd).

RANK	species	ME tiig [PUF (KG/Hh)	9) $P E F$	Its-o.	PROPDRTI 0 N	cumulative PROPDRTI ON	Nate	
108	21921	0.00759	0.03177	0.01341	0.00004069	0.99911822	atka mackerel	
104	20000	0.03711	0.00085	0.01346	0.00003810	0.99905632	Pdacher unident	
110	21355	$0.007: 0$	0.00442	0.00979	0.00903607	0.99909438	ribbed sculpin	
111	71961	0.00682	0.00373	0.00992	0.00003657	0.99913096	clinmpegma (ancistrolepis)	magna
112	70100	0.00551	0.00000	0.01731	0.00003490	0.99916586	Chiton unident	
113	41201	0.00644	0.00128	0.01160	0.00003449	0.99920035	eunephthya (GErsemia) sp	
114	10270	0.00643	0.00000	0.01702	0.00003445	0.99923481	gutier SOLE	
115	71756	0.30617	0.00042	0.01193	0.00003309	0.99926789	volutopsius fragilis	
110	71030	0.00597	0.00000	0.01548	0.00003202	0.99929992	DIOMEDES' TRIton	
217	75110	0.00585	0.00154	0.01006	0.00003135	0.99933126	spisula sp	
110	20006	17.00574	0.00276	0.00872	0.00003075	0.99936201	Sahback poacher	
11\%	71012	c. 00569	0.03172	0.00767	0.00003052	0.99939253	orangepeel nudibranch	
120	00471	0.00559	0.100000	0.01486	0.00002997	0.99942250	alaska skate	
221	71092.	0.00533	0.00055	0.01010	0.00002854	0.99945104	Plicifusus kroyeri	
122	71759	0.00480	0.00000	0.01103	0.00002573	0.99947677	volutopsius filasus	
123	20050	0.00402	0.00063	0.00741	0.00002155	0.99949832	aleutian alligatorfish	
124	20060	0.00363	0.00128	0.00597	0.00001944	0.99951776	Warty peacher	
125	66204	0.00352	0.00000	0.00935	0.00001885	0.99953661	legbeus polaris	
126	21340	0.00325	0.00000	0.00758	0.00001744	0.99955406	blackfin sculpin	
127	71025	0.00305	0.00000	0.00674	0.00001636	0.99957042	tritonia sp	
$: 2 \varepsilon$	42000	0.00305	0.00000	0.00733	0.00001634	0.99958676	SEA PEN UNIDENT	
224	71835	0.00298	0.00179	1).00410	$0.0000159 y$	0.99960275	neptunea borealls	
130	74000	4.00278	0.00088	0.00509	D.00001599	0.99961874	clam unident	
131	66502	0.03287	0.00028	0.00546	0.00001538	0.99963412	CRANGON SP	
132	21550	0.00281	D. 30123	0.00439	0.00091507	0.99964919	triglops sp	
133	72755	0.00277	0.03047	0.00506	0.00001482	0.99966401	succinum polare	
134	21735	0.00263	0.00000	0.00690	0.02001409	0.99967810	kelp greenling	
135	81361	0.00248	0.00000	0.00534	0.00001329	0.99969139	diplopieraster multipes	

Table B-1.--Rank order of fish and invertebrate taxa by relative abundance (kg/ha) (cont'd).

GAHK	SPECIFS	$\begin{gathered} \text { MEAN CPUUE } \\ (K G / H \&) \end{gathered}$	-0 PERCENT *---C ONFIDENCELIMITS-.-**		PROPORTION	cumulative PFOPORTION	NAME
136	20005	0.00244	0.00004	0.00483	0.00001306	0.99970446	LONGNOSE PDACHER
231	75285	0.00240	U.0.0000	0.00487	0.00001287	0.99971733	greenland cockle
130	71010	0.00228	0.00000	0.00520	0.00001221	0.79972954	NUDI BRANCH UNIDENT
13y	65000	0.00209	0.00000	0.00543	0.00001119	0.99974074	BARNACLE UNIDENT
140	21930	9.0う175	0.03000	0.00398	0.00001047	0.99975121	HEXAGRAMMOS SP
141	98080	0.00169	0.00000	0.00502	0.00001013	0.99916133	STYELA SP
142	42005	0.00189	0.00000	0.00502	0.00001013	0.99977146	ROUGHSTEH SEAWHIP
143	7180	0.00151	0.00000	0.00376	0.00000969	0.99978115	NEPTUNEA SP
144	69000	9. 000179	0.05000	0.00392	0.00090962	0.99979077	pagurus aleuticus
145	72156	0.00179	0.03042	0.00315	0.00000957	0.99980034	BUCEINUM SOLENUM
140́	66570	0.00167	9.01024	0.00241	0.00000698	0.99980932	ARGIS SP
147	66045	9.03157	0.00082	0.00232	0.00000842	0.99981773	HUMPY SHRIMP
148	82740	0.00150	0.00000	0.00397	0.00000805	0.79982578	Parma sand dollar
149	69121	0.00148	0.01000	0.00326	9.00000791	0.99983369	ELASSOCHIRUS CAVIMANUS
150	69120	0.00141	0.00000	0.00351	0.00000759	0.99984127	pagurus capillatus
151	72063	0.00140	0.00081	0.00199	0.00000750	0.99984876	AFORIA (LEUCOSYRINX) CIFCIAATA
152	69086	0.00130	0.00002	0.00259	0.00000698	0.99985574	Pagurus trigonocheirus
153	22236	0.00128	0.1) 017	0.00239	0.00000686	0.99986260	PINK SNAILFISH
154	23800	9. 90126	0.109090	0.00162	0.90000671	0.99986937	PRICKLEBACK UNIDENT
155	75111	0.00120	0.03000	0.00253	0.00000644	0.99987580	ALASKA SURF CLAM
156	81780	0.01117	0.03000	0.00276	0.00070626	0.99988207	COMADN MUD STAR
157	74050	0.00109	0.00000	0.00247	0.00000582	0.99988789	HUSSEL UNIDENT
158	69070	0.00063	0.00016	0.00150	0.00000446	0.99989234	Pagurus confragosus
154	50160	0.00075	0.00015	0.00135	0.00000403	0.99989638	SEA MOUSE UNIDENT
160	75286	0.00075	0.03000	0.00198	0.00000400	0.97990038	SERHIPES LAPERDUSII
161	21734	9.001374	0.00014	0.00234	0.00000395	0.99990433	ROCK GREENLING
162	75266	0.00071	0.00035	0.00207	0.00000381	0.99990814	PACIfIC RAZOR CLAM
163	71774	0.00059	0.00000	0.00149	0.00000371	0.99991185	BERINGIUS STIMPSONI

Table B-1.--Rank order of fish and invertebrate taxa by relative abundance (kg/ha) (cont'd).

FANK	SPECIES	MEAN CPUE (KG/HA)	9) PERCE ---- ONFI DENCF.	$\begin{aligned} & \text { ENT } \\ & \text { LIMITS-- } \end{aligned}$	PROPORTION	CuMULATIVE PHOPORTION	NAME	
164	23805	0.00066	0.00030	0.00102	0.00000354	0.99991539	DAUBED SHANNY	
165	23808	0.00061	0.00027	0.00094	0.00000326	0.99991865	Snake pricklfgack	
166	71731	0.40960	9. 00034	O. ODOES	D. 00000324	0.99992189	colus malli	
167	21379	0.00052	0.00000	0.00138	0.00000279	0.99992469	HARTY SCULPIN	
168	72758	0.00052	0.00013	0.00091	0.00000279	0.99992748	Buccinum giaciale	
169	71900	0.90050	0.00017	0.00084	0.00000270	0.99993017	Plicifusus griseus	
170	75284	0.0 .7050	0.03007	0.00093	0.00000267	0.99993244	SFRRIPFS SP	
171	71530	0.00044	0.05021	0.00066	0.00000235	0.99993520	natica clausa	
172	72140	0.00042	0.03000	0.00089	0.00000225	0.99993745	BUCCINUM SP	
173	71760	0.00041	0.100006	0.00071	0.00000222	0.99993967	VOLUTOPSIUS CASTANEUS	
174	20202	0.00041	0.00020	0.00062	0.00000218	0.99994184	PaCIFIC SAND LANCE	-
175	21446	0.00036	0.00000	0.00097	0.00000195	0.99994379	ICELUS SP	
176	68020	0.00036	0.00000	0.00096	0.00000193	0.99994572	DUNGENESS CRAB	
177	21455	0.00034	0.02000	0.00091	0.00000183	0.99994755	SHOOTH LUMPSUCKER	
178	69095	0.00033	0.113000	0.00084	0.00000178	0.99994933	Pagurus rathbuni	
179	68000	0.00032	0.03000	0.00084	0.00000170	0.99995103	CRAB UNIDENT	
180	66611	0.00031	0.03004	0.00058	0.00000169	0.99995271	ARGIS LAR	
181	74981	0.00031	0.03009	0.00053	0.00000166	0.99935437	COCKLE UNIDENT	
182	21346	0.00029	0.00000	0.00064	0.00000154	0.99995592	RED IRISH LORD	
183	21344	0.00027	0.00000	0.00065	0.00000147	0.99995739	BRONN IRISH LORD	
184	71721	0.00027	0.00000	0.00059	0.00000146	0.99935885	COLUS HERENDEENII	
185	20001	0.00026	0.00015	0.00043	0.00000242	0.99996026	TUBENOSE POACHER	
186	21441	0.00026	0.00011	0.00042	0.00000139	0.99996165	SPatulate sculpin	
167	66269	0.00024	0.00000	0.00048	0.00000121	0.99996291	HIPPDLYTID SHRIMP UNIDENT	
188	66170	0.00023	0.00003.	0.00043	0.00000125	0.99996417	Euxlus sp	
189	79020	0.00022	0.00406	0.00039	0.00000120	0.99996537	ROSSIA PACIfICA	
190	10250	0.00022	0.00000	0.00045	0.00000120	0.99996657	SAND SOLE	
191	72422	0.00022	0.00007	0.00057	0.00000811	0.99996774	TROPHONOPSIS (BOREOTROPHON)	DALLI

Table B-1. --Rank order of fish and invertebrate taxa by relative abundance (kg/ha) (cont'd).

HaNk	SPECIES	MEAN CPUE (KG/HA)	93 PEK - -n- © ONFIDENC	ITS———*	PROP ORTI ON	cumulative PROPORTION	Name
192	23836	0.00021	0.00005	0.00038	0.00000114	0.99996888	LONGSNOUT PRICKLEBACK
193	30060	0.00021	0.00000	0.00055	0.00000212	0.99997000	PACIFIC DCEAN PERCH
194	85210	0.00020	0.00000	0.00042	0.00000108	0.99.997.108	PSOLUS SP
195	80650	0.00019	0.00000	0.00051	0.00000104	0.99997212	HIPPASTERIA SPINOSA
196	75281	0.00019	0.00004	0.00034	0.00000101	0.99997312	CLINOCARDIUM SP
197	66580	0.00018	0.00000	0.00038	0.00000094	0.99997407	ARGIS DENTATA
198	71580	0. 00017	0.00004	0.00031	0.00000095	0.99997500	POLINICES PALLIDA
199	23809	0.00017	0.00000	0.00038	0.00000093	0.99997593	Pighead prickleback
200	30170	0.00017	0.00000	0.00045	0.00000092	0.99997685	OARKBLOTCHED ROCKFISH
201	21463	0.00016	0.00000	0.00032	0.00000085	0.99997769	PACIFIC SPINY LUMPSUCKFR
$\angle 02$	66500	0.00016	0.00000	0.00036	0.00000084	0.99997853	CRANGONID SHRIMP UNIDENT
203	32305	0.00015	0.00000	0.00040	0.00000081	0.99997935	TRICHOTKOPIS BICAEINATA
204	80729	0.00015	0.00000	0.00039	0.00000078	0.99998012	RED BAT ${ }_{\text {c Star }}$
205	71726	0.00014	0.00001	0.00028	0.00000078	0.99998090	CDLUS SPITZ3ERGENSIS
206	21320	0.00014	0.00001	0.00027	0.00000075	0.99998165	SLIM SCULPIN
207	66600	0.00014	0.00000	0.00037	0.00000075	0.99798240	SCLEROCRANGON SP
208	72501	0.00012	0.00000	0.00032	0.00000065	0.99998305	FUSITEITON SP
209	20010	0.00012	0.02000	0.00032	0.00000065	0.99998370	blackfin Poacher
210	74120	0.00012	0.00000	0.00032	0.00000065	0.99998435	WEAJHERVANE SCALLOP
211	24001	0.00012	0.00000	0.00031	0.00000063	0.99998496	PROWFISH
212	79000	0.00011	0.00000	0.00029	0.00000058	0.99998556	SQUID UNIDENT
213	20036	0.00011	0.00000	0.00023	0.00000058	0.99998614	SPINYCHEEK STARSNOUT
214	30050	0.00010	0.00000	0.00028	0.00000056	0.99998670	ROUGHCYE ROCKFISH
215	81080	0.00010	0.00000	0.00022	0.00000054	0.99798724	SOLASTER PAXILLATUS
216	71754	0.00010	0.00000	0.00022	0.00000054	0.99998778	Prfulcfusus sp
217	80660	0.00020	0.00000	0.00022	0.00000054	0.99998831	PSEUDARCHASTER Parelit
218	80230	0.00010	0.00000	0.00026	0.00090053	0.99998284	pedicellastef magister
21%	68510	0.00009	0.00000	0.00019	0.00000048	0.99998932	DECORATOR CRAB

Table B-1.--Rank order of fish and invertebrate taxa by relative abundance (kg/ha) (cont'd).

Table B-1.--Rank order of fish and invertebrate taxa by relative abundance (kg/ha) (cont'd).

RANK	SPECIES	mean cpue (KG/HA)	ヲ) PERCENT - - - - ONFIDENCF. LIMITS---.		PROPORTI ON	cumulative PROPORTIDN	NaHE
248	75610	0.00004	0.00000	0.00011	0.00000023	0.99999869	ROCK JINGLES UNIDENT
24y	71890	0.00004	0.00000	0.00011	0.00000022	0.959 ± 9891	PLICIFUSUS SP
250	21335	0.00004	0.00000	0.00010	0.00000021	0.99999912	ARCIIC HOUKEAR SCULPIN
251	21384	0.00004	0.0 .1000	0.00010	0.00000021	0.99999933	ENOPHRYS SP
252	23841	0.00004	0.00000	0.00010	0.00000020	0.99999953	DECORATED WARBONNET
253	74561	0.00004	0.00000	0.00010	0.00000020	0.99999973	HUSCULUS N1GER
254	21360	0.00003	0.05000.	0.00009	0.00000017	0.99999990	BRIGHTBELLY SCULPIN
255	66171	0.00002	0.00000	0.00005	0.00000010	1.00000000	EJALUS BARBATUS
	JCIAL	186.56515					

END OF RANK
Appendix CPopulation and Biomass Estimates for Principal Species of Fish
Appendix C presents estimates of population size in terms of number of individuals and biomass estimates in metric tons for the principal species of commercially important demersal fish. Estimates are given by subarea and for subareas combined. Estimates are given by stratum code. Strata codes corresponding to subareas illustrated in Figure 1 are as follows:
Subarea Number Stratum Code (s)
1 1
2 2
3N 3
3S 7, 12
4N 4
4 S 6
5 10
List of Tables
Table Page
C-1. Population and biomass estimates for walleye pollock 131
C-2. Population and biomass estimates for yellowfin sole 132
C-3. Population and biomass estimates for rock sole 133
C-4. Population and biomass estimates for Greenland turbot 134
C-5. Population and biomass estimates for Alaska plaice 135
C-6. Population and biomass estimates for flathead sole 136
C-7. Population and biomass estimates for Pacific cod 137
C-8. Population and biomass estimates for Pacific halibut 138
C-9. Population and biomass estimates for arrowtooth flounder 139
C-10. Population and biomass estimates for sablefish 140

STANDARD TRAML WIDTH $=12.19200000$ METERS

Table C-2.--Population and biomass estimates for yellowfin sole.

STANDARD TRAML WIDTH $=12.19200000$ METERS

STRATUA	AREA SO. MI.	SAMPLES	TOTAL HAULS	HAULS HIJH CATCH	$\begin{array}{ll} \text { HAULS } & \text { H } \\ \text { HITH } & H \\ \text { NUMS. } & \text { L } \end{array}$	$\begin{aligned} & \text { HAULS } \\ & \text { HIIH } \\ & L=F \end{aligned}$	CPUF MT/KM	Variance CPUF RT/K	CPUE NO/KM	$\begin{gathered} \text { VARIANCE } \\ \text { CPUE } \\ \text { NO/KM } \end{gathered}$
1	24.306.	. $683775219 E+07$	58	58	58	58	0.12014	. 28853日E-03	859.75241	.174832E.05
2	17.174.	. 50003115 SE407	41	19	19	17	0.00946	. $936552 E-05$	48.11900	. 406475 E 03
3	16.219.	. $4562908 \mathrm{E} 7 \mathrm{E}+177$	32	4	4	4	0.00001	. 652092E-11	0.04956	.634826E-03
4	26.798.	. $753878333 \mathrm{E}+07$	67	67	66	66	0.04554	. $549718 \mathrm{E}=04$	0.00000	0 .
6	23.113.	. $668800334 E+07$	51	57	57	57	0.10129	. 204739F-03	645.06307	. $690935 \mathrm{~F}+04$
7	17.030.	. $4790865 \mathrm{E} 3 \mathrm{E}+07$	39	15	15	7	0.00078	. 97937 3E-07	2.79454	. 117577 E 01
10	4.481.	. $126072603 E+07$	10	8	8	8	0.00138	-12i947E-05	6.13479	- 232037 E 02
12	5.927.	-166143635E+07	25	21	21	16	0.01075	. $166997 \mathrm{E}-04$	43.74942	. $258440 \mathrm{E}+03$
TOTAL	136.303.	- 383467831 E* 08	329	249	248	233				
STRATUM	MEAN WI MT	POPULATION		ARIANC: ULATION	$\begin{aligned} & \text { METHOD } \\ & \text { USED } \end{aligned}$		SS MT.	VARIANCE BIOMASS		
1 2	$\begin{aligned} & 0.000140 \\ & 0.000197 \end{aligned}$	$.5 \varepsilon 7 E 77391 E+10$ $.240609993 E+09$	$\begin{aligned} & . E 17426 \\ & .101631 \end{aligned}$	$\begin{aligned} & 05 R E+12 \\ & 320 E+17 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$		$\begin{aligned} & 05 E+06 \\ & 36 E+05 \end{aligned}$	$\begin{aligned} & .134905612 E+11 \\ & .234167273 E+09 \end{aligned}$		
3	0.000107	- $225247124 \mathrm{E}+06$. 132171	126E. 18	1	- 2	02E+02	. $135766498 \mathrm{E}+03$		
4	0.000147	- $23516 \mathrm{E939E}+10$).		3	. 3	20F+U6	- $3124228285+10$		
6	0.000157	. $431418396 \mathrm{E}+10$. 309050	$916 E+18$	1	. 67	62E*06	. $915785780 \mathrm{E}+10$		
7	0.000278	.133873293E +08	. 2698 EG	5フ1E+14	1	- 32	87E464	. $224783467 \mathrm{E}+07$		
10	0.000225	. $773453557 \mathrm{E}+07$. 366806	852E+14	1	. 17	$56 E+04$. $203363224 E+07$		
12	0.000266	. $729493775 E$ OS	. 718551	$800 \mathrm{E} \cdot 15$	1	-17	$26 E+05$. $464308546 E 408$		
TOTAL		. $128595337 E+11$. 1113742	254F+19		- 1	$45 E+07$. $260515269 E+11$		
EFFE	TIVE D.F. =	97.70100				138				

confidence limits
foral biomass mt
LOWFR

UPPER
TOTAL POPULATION LOWER

UPPER
80.000 PERCENT 90.000 PERCENT 95.000 PERCENT
$.170490226 \mathrm{E}+07$ $.164533755 E-07$ $.159335922 \mathrm{E}+07$
$212105064 E+07$ - 21 ED61536E+07
$.223259308 E+07$
$.114819733 E+11$
110859818511
$-107397070 E+11$
.108
$.142371342 \mathrm{E}+11$
$.146331251 E+11$
$.149794005 \mathrm{E}+11$

STANDARD THAWL HIDTH $=12.19200000$ METERS

STANDARD TRAWL HIDTH $=12.19200000$ HETERS

CONFIDENCE LIMITS

TOIAL BIDMASS MT LOHFR

UPPER

TOIAL POPULATION
LOWER

UPPER

$.76587540 E F+09$	$.103351938 E+10$
$.726623966 E+09$	$-107277082 E+10$
$.691622662 E+09$	$.11075 i 213 E+10$

STANDARD TRAHL HIOTH $=12.19200000$ METERS

STRATUM	AREA	SC. MI.	SAMPLES	IOTAL HAULS	$\begin{aligned} & \text { HAULS } \\ & \text { HITH } \\ & \text { CATCH } \end{aligned}$	HAULS WIIH NUHS.	$\begin{aligned} & \text { HAULS } \\ & \text { WITH } \\ & L-F \end{aligned}$	CPUE HT/KM	VARIANCE CPUE MT/KM	CPUE NO/KH	$\begin{aligned} & \text { VARIANCE } \\ & \text { CPUE } \\ & \text { NO/KM } \end{aligned}$
1		24,306.	. $683715219 E+07$	50	50	50	4	0.00521	. 113265E-05	12.33903	. $475065 \mathrm{E}+01$
2		17.714.	. $500031165 E+07$	41	11	11	0	0.00084	-185517E-06	1.40512	.676318E+00
3		16.219.	. $456290887 \mathrm{E}+07$	32	6	6	0	0.00004	. $303095 \mathrm{E}-09$	0.08486	. $116176 \mathrm{E}-02$
4		26.198.	. 753818363 E407	67	65	64	19	0.02332	-119053E-04	0.00000	0.
6		23.713.	. 66CEDO334E.07	51	56	56	25	0.01791	- 555702E-05	39.27784	. $206935 \mathrm{E}+02$
7		17.030.	. 479086583 E + 07	39	16	15	0	0.00074	. 59292日E-07	0.00000	0.
10		4.421.	. $126072603 \mathrm{E}+01$	10	7	7	1	0.00416	.630391E-05	5.85810	. $136446 \mathrm{~F}+02$
12		5.927 .	. $166743635 \mathrm{E}+\mathrm{U7}$	25	16	16	e	0.00264	. $485420 E-06$	4.16648	.145559E41
TOTAL		136.308.	. $383467881 \mathrm{E}+08$	329	221	225	57				
STRATUM	MEAN	HI MI	POPULATION		ARIANCE ulation	METH USE		SS MT.	variance BIOMASS		

10.000423	. $8437125265+08$. $222116013 \mathrm{~F}+15$	1	. $356543703 E+05$. $5295694915+08$
20.600598	. $702605845 \mathrm{SE}+07$. $169100587 \mathrm{E}+14$	1	. $420399417 \mathrm{E}+04$	-463851452E+07
30.000509	- $387190230 \mathrm{t}+06$. $237115622 E+11$	1	.197120994E43	. $631047162 E+04$
40.000450	- $390872033 \mathrm{t}+09$	0.	3	. $115821499 \mathrm{E}+06$. $676614588 E+09$
6 . $0 . C 00457$	- $262021499 \mathrm{E}+09$. 925608830 E -15	1	-117155081E+06	. $248561885 \mathrm{E}+09$
$7 \quad 0 . C 00756$. $468654804 E+07$	0.	3	- $354093431 \mathrm{E}+04$. $136091249 \mathrm{~F}+07$
10 0.000710	. $7385453585+07$. $216371783 \mathrm{E}+14$	1	. $524138107 \mathrm{E}+04$. $100196166 \mathrm{E}+\mathrm{CB}$
$12 \quad 0.000634$. $694733807 \mathrm{E}+07$. $404705233 \mathrm{E}+13$	1	. $440682209 E+04$	$.134963463 E+07$
Jotal	. $7636983735+09$	-119: $192905+16$		- 348821209E+06	. $995508410 E+09$
EFFECTIVE D.F. =	94.71837			136.61224	
	CONFIDENCF. LIMITS				
	$\begin{gathered} \text { IOIAL GIOMASS MT } \\ \text { LOHER } \end{gathered}$		UPPER	TOTAL POPULATION LOWER UPPER	
80.000 PERCENT	. 30815120	$3 \mathrm{~F}+06 \quad .389491$	$14 \mathrm{E}+06$.717119547E+09	. $808275199 \mathrm{E}+09$
$90.000 \text { PEFCENT }$. 24650872	$7 \mathrm{~F}+06 \quad .411133$	9nF. 46	. 70 O298576F+09	$.22109 E 16 E E+39$
95.000 PEFCENI	. 28634919	$5 E+06$-411293	23E*06	.675084255E.09	. 832310492 E (09

```
Table C-6.--Population and biomass estimates for flathead sole.
```

STANDARD TRAWL NIDTH $=12.19200000$ METERS

STRATUM	AREA	SO. HI.	SA MPLES	TOTAL haUls	HAULS WI TH CATCH	HAULS WIJH NUHS.	$\begin{aligned} & \text { HAULS } \\ & \text { WITH } \\ & L-F \end{aligned}$	CPUE HT/KM	VARIANCE CPUE MT/KM	cPuE NOIKM	variance CPUE NO/KM
1		24,306.	- EE37752!9E*07	58	46	46	8	0.00221	. 205280E-06	13.30253	.747147 t 01
2		17.714.	- $500031165 E+07$	41	40	49	25	0.00772	. $171533 \mathrm{E}-05$	52.97423	. $774167 \mathrm{E}+02$
3		16.219.	. 456290887 E + 07	32	32	32	15	0.00872	. $361834 \mathrm{E}=05$	46.04577	.983577E-02
4			. 753878383 E +07	67	52	52	22	0.00074	. $104789 \mathrm{E}-07$	3.58164	-244168E+00
6		23.773.	. $668800334 E+07$	57	35	35	6	0.00097	-127236E-06	4.07964	. 128610 E + 01
7		17.030.	. $4790865 d 3 E+07$	39	33	33	20	0.00285	. 533991 -06	17.56989	. 1 E8404E+02
10		4.421.	. $126072603 \mathrm{E}+07$	10	9	9	3	0.90129	- 210348E-06	7.25614	. 602918 C 01
12		5,927.	$.166743635 \mathrm{E}+07$	25	23	23	16	0.00450	. 16951 2E-05	25.68546	- $390924 \mathrm{E}+02$
TOTAL		136,308.	- 3E3467e81F+08	329	270	270	115				
STRATUM	MEAN	HI MT	POPULAIION		ARIANCE ULATIDN	METH USE		S MT.	variance BICMASS		

STANDARD IRAKL HIDTH $=12.19200000$ METERS

0.000 PERCFNT 95.000 PERCENI

103535655F:10 - 39 9852362E. 09
. $116628558 \mathrm{E}+10$
$.118520413 E+10$ $.120179177 \mathrm{E}+10$

STANDARD TRAWL HIDTH $=12.19200000$ METERS

CONFIDENCE LIMIIS

80.000	PERCENI	. 371218142 C 05	. 492298479 t 05	. $374208073 \mathrm{E}+08$	-489328762E*) 8
90.000	FERCENI	. $353956106 E+05$	- $50962 J 525 E+05$	- $3573947775+08$	- 506142058E+08
95.000	PERCENT	. $332840451 E+05$. $524736170 t+05$. $342535076 \mathrm{E}+08$. $21001759 E+08$

```
STANDARD TRAWL HIDTH = 12.19200000 METERS
```



```
Table C-10.--Population and biomass estimates for sablefish.
```



```
            Appendix D
    Population Estimates by Sex and Size Groups for Principal Species of Fish
        Appendix D presents estimates of the numbers of individuals within the
overall survey area by sex and centimeter-size group for principal species
of fish.
    List of Tables
Table Page
    D-1. Population estimates by sex and size group for walleye pollock . . 142
    D-2. Population estimates by sex and size group for yellowfin sole . . . 144
    D-3. Population estimates by sex and size group for rock sole . . . . . 145
    D-4. Population estimates by sex and size group for Greenland turbot . . 146
    D-5. Population estimates by sex and size group for Alaska plaice. . . . 148
    D-6. Population estimates by sex and size group for flathead sole. . . . 149
    D-7. Population estimates by sex and size group for Pacific cod. . . . . 150
    D-8. Population estimates by sex and size group for Pacific halibut. . . 152
    D-9. Population estimates by sex and size group for arrowtooth flounder. 154
D-10. Population estimates by sex and size group for sablefish . . . . . 156
```

Table D-l.--Population estimates by sex and size group for walleye pollock.

LENGTH(MM)	*** MALES ***	** females **	** UNSExED **	*** TCTAL ***	PROPORIION	cumulative PROPDRTION
70.0	0.	0.	. 54765903 Eto	. $547659032 E+05$	0.00001	0.00001
90.0	0.	0 .	. $283124817 E+06$. $283124817 \mathrm{E}+06$	0.00005	0.00006
100.0	0.	0.	- 26032016 CE+07	- $260320180 E+07$	0.00044	0.00049
110.0	. 394271580 E -05	0.	-62822143EE4) 6	-62E615710E408	0.01054	0.01103
120.0	0.	.8093868Ece+05	- $218876624 E+09$	- $218957563 E+09$	0.03670	0.04773
130.0	. $261629370 E+06$. $130814685 E+06$	-292611612E409	- 2930040565409	0.04912	0.09683
140.0	. $951691507 \mathrm{E}+05$. $316518376 \mathrm{E}+06$. 27547824 2E409	. $273689930 \mathrm{E}+009$	0.04590	0.14274
150.0	. $378462615 E+05$. $208616256 \mathrm{E}+06$. $272505261 E+09$	$.172751723 E+09$	0.02895	0.17169
151.0	c.	0.	. $602069327 \mathrm{E}+09$. 602069327E+09	0.10091	0.27259
156.0	0.	0.	-11E70C07EE+08	.118700076E408	0.00199	0.27458
160.0	$.133839543 \mathrm{E}+07$. $101065629 \mathrm{ta7}$	$.169287345 E+09$.1)1636397E409	0.02877	O. 30335
170.0	. 1025415 E GE 07	.1413760045407	-141671537E+09	$.144310733 \mathrm{~F}+09$	0.02419	0.32754
180.0	. $263864870 E+07$. $143077274 \mathrm{E}+07$. 75776268 SE*02	. $798457399 E+08$	0.01358	0. 34032
190.0	. 52605247 CE+07	$.625176814 \mathrm{E}+07$	-1926545*2E*OE	- $307977527 E+08$	0.00516	0.34608
200.0	-151146962E+08	. $114 \mathrm{EEDSEPE+OE}$. $553879810 \mathrm{E}+07$. $3203953715+08$	0.00537	0. 35145
210.0	. $290889966 \mathrm{E}+0 \mathrm{O}$	- $230560821 \mathrm{E}+08$. $271288435 E+05$	- 5217220 6E+08	0.00874	0.36019
220.0	. $310794245 E+92$. 2908 Cl 6ebethe	. $161958837 \mathrm{E}+01$. 617872397E408	0.01036	0.37055
230.0	-42E15Y07 5E+0e	. 4 SE533319E*08	- 288513119E+05	. $866982908 E 408$	0.01453	0. 38508
240.0	-628688385E4C8	$.635234946 \mathrm{E}+08$. $101715298 E+06$	$.126494098 E+09$	0.02120	0. 40628
250.0	.7213982645 .00	. $932000902 \mathrm{E}+\mathrm{O}$. $379691521 E 05$. $165377886 \mathrm{E}+09$	0.02772	0.43407
260.0	. $991101420 E+08$. $101027203 \mathrm{C}+09$	0.	. $200137345 E 09$	0.03354	0.46754
270.0	. $995460395 E 402$. $998752825 E+08$	0.	.1942213E2E+09	0.03339	0. 59093
280.0	. $850642811 E+08$. $953455336 E+0$ E	0.	. $180409915 E+09$	0.03024	0. 53116
290.0	. $861720202 \mathrm{E}+\mathrm{CB}$. $815929242 \mathrm{E}+08$	0.	.113710944E409	0.02912	0.56029
300.0	- 592513954 E -08	. $701463676 \mathrm{E}+08$	0.	-129397767E+09	0.02169	0.58197
310.0	. $601354726 E 408$. $497372278 \mathrm{EE}+08$	0.	-1C9872700E*09	0.01841	0.60039
320.0	.71002331 EEO8	. $587147023 \mathrm{E}+08$	0.	. $129717034 \mathrm{E}+09$	0.02174	0.62213
330.0	-599667854F408	. $535287922 \mathrm{E}+08$	0.	-113495578E+09	0.01902	0.64115
340.0	. $556468744 \mathrm{E}+08$. $537970831 \mathrm{E}+08$	0.	.109443958E+09	0.01834	0.65949
350.0	$.739550811 E+0 \mathrm{e}$. $669161218 \mathrm{~F}+0 \mathrm{C}$	0.	.14E871209E+09	4).02462	$0.6 E 411$
360.0	- PE5127964E+0E	. $754130330 E+08$	0.	.1639?1829E+09	0.02747	0.71158
370.0	. $124861423 E+09$. $106325433 \mathrm{E}+09$	0.	- $231086856 \mathrm{E}+09$	0.03873	0.75051
320.0	- 976 E 5560 CO	.10e741817E+09	0.	. 202427173 E +09	0.03493	0.78525
390.0	. $974462423 E+08$. 1047287 CSE +09	0.	. 202174947 E 09	0.03388	0.81913
400.0	-664071304E*C8	-811347633E*OE	0.	. 147541894509	0.02473	0.84386
410.0	. 50033620 IE +08	$.542071129 E+08$	0.	. $104300733 E+09$	0.01748	0.86134
420.0	. $320965589 \mathrm{E}+\mathrm{C8}$. $392571616 E+08$	0.	$.713537264 E+0 \mathrm{E}$	0.01196	0.87330
430.0	-350803511E+08	-38E670261E+08	D.	. 739473772 E 0 O	0.01239	0.82569
440.0	. $261701817 \mathrm{E}+08$. 3003168 EBE -08	0.	. 562018705 E -08	0.00942	0.89511
450.0	. 250190696 E -08	- $2429 \mathrm{E} 2439 \mathrm{E}+08$	0.	. 49 ¹73135E+00	0.00821	C. 90338
460.0	. $224493137 \mathrm{~F}+$ UP	. $246205517 \mathrm{E}+08$	0.	. $470698655 E 408$	0.50789	0.91126
470.0	. $268866255 E+C 8$	- $2612775 C 2 E+08$	0.	. 529543757 E (0e	0.00888	0.92014
480.0	. 2201914 ¢7E+OE	. $309478095 \mathrm{E}+0 \mathrm{e}$	0.	. 529669592 E -08	0.00688	0.92902

** FEMales **	\cdots	UNSEXEO
. 276316290 COE	0.	
. $302799416 E+08$	0.	
. $254734 \mathrm{PEIE+OE}$	0.	
. $250111511 \mathrm{E}+08$	0.	
. 2266799 SE (00	0.	
.1524E5909E+08	0.	
. $171645869 E+08$	0.	
. $147967736 \mathrm{E}+08$	0.	
. $161862241 F+08$	0.	
. $988679946 E+07$	0.	
. $109 \mathrm{O} 22024 \mathrm{E}+0 \mathrm{~B}$	0.	
. $771790337 \mathrm{E}+07$	0.	
. $932041037 \mathrm{E}+07$	0.	
. $715137229 \mathrm{E}+07$	0.	
. 5964 E3651E+07	0.	
. $538360655 E+07$	0.	
.430185560E+07	0.	
. 2654692505407	0.	
- $211113268 E+07$	0.	
. $255845010 E+07$	0.	
.148513676E407	0.	
. 202866938E+07	0.	
. $638484345 E+06$	0.	
. $154480166 E+07$	0.	
. 5206 द2PS6E+06	0.	
$.178911239 \mathrm{E}+06$	0.	
- $337427323 \mathrm{~F}+06$	0.	
+109890079E+06	0.	
.416736997E 06	0.	
-246776239E+06	0.	
- $323440925 \mathrm{E}+05$	0 .	
. 6946 ¢ 2 E 今6E*05	0.	
. 202667235E+10		05074897

- TOTAL .. $.527767830 E+0 \mathrm{E}$ - $54 \mathrm{C} 540071 \mathrm{E}+06$ -410606354E+0 $.405542239 E 408$ - $344287379 E+08$
$252411243 \mathrm{E}+08$
$269978127 E 400$
269978127E400
- $241642960 \mathrm{E}+0 \mathrm{O}$
$214056440 E+08$
159685 OE
$156168539 \mathrm{E}+08$
$120394808 \mathrm{E}+08$
-123942318E408
$.114905644 \mathrm{E}+08$
$.793939341 E+07$
. $637 \mathrm{E} 40909 \mathrm{E}+07$
-5635\$4076E*07
32136638EE407
- $241011329 \mathrm{~F}+07$ $241011329 E+07$
$262469165 E+07$ 189877105E*07 -189877105E+07 225E31477E47 $-726814949 E+06$
$-165544829 E+17$ 526622856E+06 17 E911239E+06 -9737E4597E+U6 -109890079E+06 4 47 E7 $36997 E+06$. 24 E776237E +06 $323440925 E+05$ $.694662896 \mathrm{~F}+05$

PROPORTION
0.00885
0.00706
0.00688
0.00680
0.00517
0.00423
0.00452
0.00452
0.00405
0.00357
0.00233
0.00262
0.00202
0.00278
0.00193
0.00133
0.00107
0.00094
0.00054 0.00040 0.00045 0.00032 0.00038
0.00012 0.00012
0.00028 0.00009 0.00003 0.00016 0.00002 0.00098 0.00004 0.00001 0.00001

Cunulative PRCPORTIGN 0.93786
0.94692 0.95380 0.96060 0.26637 0. 97060
0.97512
0.97917 0.97917
0.98276 0.98509 $0.9 E 771$
0.98973
0.99119
0.99373 0.99373 0.99506
0.93613 0.99707 0.99761 0.99842 0.99847 0.99879 0.99916
0.99927 0.99956 0.99965 0.99968 0.99985 0.99994 0.99998 0.99993
1.00003

Table D-2.--Population estimates by sex and size group for yellowfin sole.

LENGTH(MA)	*** Males ***
70.0	. $650340154 E+06$
80.0	. $120582868 \mathrm{E}+08$
90.0	. $10 \mathrm{ESO5989E+0E}$
100.0	. $124884761 E+08$
110.0	. 336470842 E - 08
120.0	. 545720241 E -09
130.0	. 779258712 E 408
140.0	- 305290777 E -08
150.0	.142597254E49
160.0	. $170057116 \mathrm{E}+09$
170.0	.198331522E+09
180.0	. $291451937 \mathrm{E}+09$
190.0	. $345970793 \mathrm{EtO7}$
200.0	-41901802EE+09
210.0	.429110631E409
220.0	-55e874804F*O9
230.0	.6i2090722E+09
240.0	-686437283E*09
250.0	.67414E5]EE+09
260.0	. $554601445 E 409$
270.0	. $406449021 E+09$
280.0	. $2724024 \mathrm{E} 3 \mathrm{E}+09$
290.0	.185260716E*09
300.0	. $231675602 \mathrm{E}+0 \mathrm{E}$
310.0	$.450483490 E+08$
320.0	.218969000E408
330.0	.112051650F+08
340.0	- $384930423 \mathrm{EFO7}$
350.0	. $927265425 E+06$
360.0	$.193867490 E+07$
370.0	. $176816524 \mathrm{E}+06$
380.0	.127200460F.U6
390.0	0.
400.0	0.
410.0	0.
430.0	0.

TOTAL $\quad .640694375 E+10$

. $2053480 \mathrm{CLE}+07$	
	-5003sysc5e+1)7
.173157137E+08	
$.276647914 E+08$$.61 e 309741 E+06$	
$\begin{aligned} & .574333030 E+08 \\ & -104276573 E+09 \end{aligned}$	
. 132209623 E	
-167693208E409 - 21) $7616051 \mathrm{E}+109$	
- 307596799E409	
-340356993E+09	
-342416258E+09	
. $373121951 \mathrm{E}+09$	
$.3668 \varepsilon \cos 4 \mathrm{~F}+09$$433680003 E+09$	
. 511714837	
$477768761 E+0$	
$\begin{aligned} & 492 \mathrm{4} 5535 \mathrm{E}+09 \\ & .422244179 E+09 \end{aligned}$	
$\begin{aligned} & .393257213 \mathrm{E}+09 \\ & 076546717 \mathrm{E}+09 \end{aligned}$	
.18225402SE 009	
.124213528E409	
69P533PE6E408$336096052 E+08$	
$.242030820 \mathrm{~F}+\mathrm{OE}$$.977487809 \varepsilon+07$	
$\begin{aligned} & .492240158 \mathrm{E}+07 \\ & .56127736 \mathrm{~F} .07 \end{aligned}$	
$.455500551 \mathrm{E}+0 \mathrm{E}$ -9E1051307E406	
. 107 E 52725E+07	
	884

** TCtal $.65 C 340154 E+06$ $.141117668 \mathrm{E}+08$ $158939947 \mathrm{~F}+0$ 8 298041898 CO -29804189EE0 - $613118756 E+08$ $116402998 E+09$ $-135359174 E+09$
$-194105650 \mathrm{~F}+09$.194105650 E 40 - $274807477 \mathrm{E}+09$ - $331760324 E+09$. 40795357 2E+U9 . $599054736 E+09$ -686327786E+0 $.767434284 E+09$ 801232582E40 9257633175*0 - $1045730725 \cdot 10$ - $113235234 \mathrm{E}+10$ $-113235234 E+10$ $-103237921 E 410$ $.899334555 E 40$. 694646662 E + 0 - 51 E518049E409 - $379716277 \mathrm{E}+09$. $227302374 E+09$ 146110428E+0 -146110428E+0 - 1145 號 - 1745 C9094E40 - $251303475 \mathrm{~F}+0$ - $117133530 E+0$ $-501921951 E+07$
$593997372 E+07$.4555co551E+06 $.981097301 E+06$ $-107852725 E+07$

PROPORTION 0.00005 0.00110 0.00124 0.00124 0.00232 0.00478 0.00905 0.01053 0.01514 0.02157 0.02627 0.03172 0.04658 0.05337 0.05968 0.06231 0.07199 0.08132 0.0 e80 0.09222 0.08028 0.06994 0.05402 0.0295 0.01768 0.01768 0.01136 0.00631 0.00195 0.00091 0.0003 0.00046 0.00004 0.00008 0.00008
0.00001
cumulative PROPQRTIGN 0.00005 0.00115 0.00238 0.00238
0.00470 0.00470 0.20947
0.01852 0.01852
0.02905 0.04419 0.06556 $0.091 E ?$ 0.12355
0.17013 0.17013
0.22350 0.28318 0.34549 0.34549
0.41748 0.41748
0.49880 0.49880
0.52686 0.67907 0.75935 0.82929 0.88331 0. 92829 0.95782
0.97550 0.98686 0.99317 0.99317
0.99608 0.99803 0.99894 0.99933 0.79980 0.99983 0.99991 1.90999
1.00000

Table D－3．－－Population estimates by sex and size group for rock sole．

LENGTH（MA）	＊＊＊Nales＊＊＊
50.0	0.
70.0	． $317483710 E+06$
80.0	． $317493710 \mathrm{~F}+06$
90.0	－ $317423710 \mathrm{~F}+06$
100.0	． 268900277 E 407
110.0	． $620316201 E 407$
120.0	． $122306301 \mathrm{E}+08$
130.0	． $192987189 \mathrm{t}+08$
140.0	－ $228452650 \mathrm{~F}+0 \mathrm{D}$
150.0	－ 372734902 E －08
160．0	－ $307980085 \mathrm{E}+08$
170.0	． $289145778 \mathrm{E}+08$
180.0	． $457332115 E+C 8$
190.0	．473982564E＊08
200.0	． $423249451 E+08$
210.0	－442977215E＊08
220.0	．440457179E406
230.0	． 3868855 C3E408
240.0	－332365752E908
250.0	． 442230459 E ＋U8
260.0	． 449830573 F － 08
270.0	．501411710E40E
280.0	． $409626112 \mathrm{E}+08$
290.0	． 262838357 E （08
300.0	． $185426359 \mathrm{~F}+38$
310.0	．117261549E408
320.0	． $480533033 E+07$
330.0	． 3349969 d2E＊ 07
340.0	． 427827084 E 07
350.0	－91593）361E＋06
360.0	． $691034894 E+05$
370.0	． $139419471 E 106$
380.0	． 674651024 E ＋05
390.0	． $182859894 \mathrm{E}+06$
400.0	0.0
410.0	．474651024E405
420.0	0.
430.0	0.
440.0	．13844595CE406
450.0	0.0
460.0	0.
470.0	0.
480.0	c．

TOTAL
** NALES ***
． $317483710 E+06$ ．317493710E406 $268900277 E+07$ $.620316201 E+07$ $.122306301 \mathrm{E}+08$
$.192987189 E+08$ － $228452650 \mathrm{~F}+0 \mathrm{E}$ －372734902E＋0日 $.289145778 \mathrm{~F}+08$
． $457332115 \mathrm{E}+\mathrm{CB}$ －473982564E008 －423249451E＋06 $.440457179 E 408$
－ $3868855 \mathrm{C} 3 \mathrm{E}+08$.442230459 E ＋ 8 $.449830573 E 408$ － $501411710 E 40 \mathrm{E}$ ． 26963117 CHO $.185426359 \mathrm{~F}+38$ －48053303E＋0才 $.334796982 \mathrm{E}+07$ －427827084E607 $.691034894 E+05$ $.139419471 E 106$ $.674651024 E+05$ －182859894E＋06 $.474651024 E+05$ 0.
$.13844595 C E+06$
0.
0.

FEMALES
$.1661340 S 2 F+07$ $.349337810 E+06$ $.952451129 \mathrm{E}+06$ $118125119 \mathrm{E}+07$ 896970792E＋06 －896970792E＋06 $480237801 E+77$ $416467670 E+07$ $143398975 E+08$ － $1005 E 9490 \mathrm{E}+0 \mathrm{O}$ － $255037957 E+08$ $.243099376 \mathrm{E}+08$ － $2610797755+08$
$367745074 E+08$ $322975319 \mathrm{~F}+0 \mathrm{O}$ $322975319 \mathrm{~F}+0 \mathrm{O}$ － $351606726 \mathrm{E}+0 \mathrm{O}$ $.376093369 E+08$ ． $361270266 E 00$ － $337338646 \mathrm{E}+08$ －3445E3607E40日 － $25 \mathrm{E} 924496 \mathrm{E}+0 \mathrm{C}$.266972218 E 408 $.190347378 E 40 \mathrm{~B}$ 1732211 ClE © 0 229356250E40 229356250E＋0 $215 E 53475 E+0$ O －2272555：2E＋OB － $2525 E 77 \in 4 E+08$ － $335816867 \mathrm{E}+08$ － 272058622 E 408 ． 22 2415231F．08 －248533638E＋0日 $.2370397 E 1 E+O 8$ 1560527 IEE + O $162492134 E+0$ B $162492134 \mathrm{E}+0$ $.711900566 E+07$ $.798868555 E+07$ $.435257526 \mathrm{E}+07$ － $304096515 \mathrm{SE}+127$ $.462469960 E+07$ $.121512555 \mathrm{E}+07$ $1407 C 6445 E+07$ $.7983 ? 33$ 22E＋06 $.4843938535+06$
$738173842 \mathrm{E}+09$

＊＊TCTAL＊＊ $.186134092 \mathrm{E}+0$ ． $666821540 \mathrm{E} \cdot 06$ $.12 E 993484 E+07$ $149873490 E+07$ $1595973575+0$ － $358597357 E+07$ － $160055400 E+0 \mathrm{E}$ $163953068 E$ OE
－ $336 \leq 661$ 万4E＋CE
$.329042140 E+0 E$ －627772858E－0日 － $551079461 E+08$ －55C225553E＊08 －825127189E＋0日 $.796957883 E+0 \mathrm{~A}$ $.796957883 \mathrm{~F}+0 \mathrm{C}$ －774856177E＋08 $.825070644 E+08$
$.801727445 E+08$ $.724224149 E+08$ －67E949359E＋0゙E
$.707154955 E+0 \theta$
$.716002971 E+08$
$.691759148 \mathrm{~F}+0 \mathrm{O}$
$582847211 E+00$
$.492194507 \mathrm{E}+08$
$.401279233 E+08$
－ $344517061 \mathrm{E}+0 \mathrm{O}$
－ 3006410 e7E＋10
－ $369316565 E+08$
－ $314841331 E+08$
． $237574624 E+08$
－249224673E＋08 23E433735E＋08 $166527389 E+08$ －166527389E＋08 $.164320732 \mathrm{E}+08$
$.711900566 \mathrm{E}+07$ $.803615065 \mathrm{E}+07$ $.435257526 \mathrm{E}+07$ $.300096575 E+07$ $.476314555 E+07$ ． $121512555 \mathrm{E}+07$ $.140706445 \mathrm{E}+07$ $.798333322 \mathrm{E}+06$ － $484393853 \mathrm{E}+06$

PREPDRTION 0.00129 0.00046 0.00086 0.00086 0.00104 0.00248 0.00760 0.0113 0.02324
0.02273 0.04337 0.03 CO 0.03801 0.05101 0.05506 0.05353 0.05539 0.05004 0.0467 0.04886 0.04952
0.04779 0.04027 0.0340 0.02772 0.02380 0.02017 0.02552 0.02175 0.01641 0.01722 0.01647 0.01645 0.01151 0.01135 0.00492 0.00555 0.00301 0.00201
0.00033
cumulailye PROPORTIO 0.00129 0.00175 0.00262 0.00366 0.00616 0.01374 0.02507
0.04831 0.01104 0.11441
0.15248 0.19 C50 0.24751 0.35610 0.41310 0.46849 0.52853 ． 56530 0.66368 0.71147 0.75174 0.7857 0.81347
0.83727 0.85804 0.88355 0.90531 0.92172 0.95541 0.96692 0.978 $0.97 E 21$
0.98319 0.98319
0.98874 0.9917 0.99382 0.99711 0.99795
0.99892 0.99941 0.99981

Table D－4．－－Population estimates by sex and size group for Greenland turbot．

LENGIH（MA）	＊＊Males＊＊＊	＊ferales＊＊	＊＊UNSEXED＊＊	＊＊＊Total＊＊＊	PROPORTION	cumulative PROPORTION
100.0	． 905584 P9AE +05	0.15	0.0	． $905584890 \mathrm{E}+05$	0.00010	$0.00 \mathrm{Cl}{ }^{\text {0 }}$
110.0	． 6611586499 t 06	． $586669339 \mathrm{E}+06$	0.	．124782799E＊07	0.00139	0.00149
120.0	－171318000E＋07	．976353535E406	－ $360708916 E+06$	－ $305624245 \mathrm{E}+07$	0.00340	0.00488
130.0	－215621085E＋07	． $297099563 \mathrm{E}+07$	．180354458E＊06	． $530756094 E 407$	0.00530	0.02078
140.0	．429357828E＊07	$.298968456 \mathrm{E}+07$	． 721417831506	－ $800478067 \mathrm{E}+07$	0.00890	0.01968
15 U．0	． 97984426 EE＋07	．238956084E＋07	．12035445eE＋06	． $1256236405+08$	0.01375	0.03343
160.0	． $637885273 \mathrm{Ca7}$	． $390717399 \mathrm{E}+07$	－360708916E＊06	． $106467356 \mathrm{E}+0 \mathrm{C}$	0.01183	0.04526
170.0	．135E67e34E＊08	． $611555953 \mathrm{E}+01$	－36070e91 $6 \mathrm{E}+06$	． $206630519 \mathrm{E}+\mathrm{OE}$	0.02297	0.06823
180.0	． $100157755 \mathrm{t}+08$	． 1104096 ［9E＋08	．1442E356EE＋07	． 2249957515408	0.02501	0.09324
190.0	． $238544313 \mathrm{E}+08$	．174512662E＊08	．162319012E＋07	．4292538i6E＊08	0.04772	0.14075
200.0	． $224026403 \mathrm{E}+08$	． $215368013 \mathrm{E}+08$	．120354458E＋07	．457429862E408	0.05084	0.19179
210.0	． 247879614 EfOH	． $193444152 \mathrm{E}+08$	．1623190125407	． 45755566 BE408	0.05086	0.24265
220.0	． $284710438 \mathrm{E}+0 \mathrm{E}$	． 246111153 E 0 O	．901172289E＋06	． $539839314 \mathrm{Et08}$	0.06000	0.30265
230.0	． $166365763 \mathrm{E}+1) \mathrm{E}$	．20E030520E＋08	． $5410633745+06$	． $379807037 \mathrm{E}+08$	0.04221	0.34487
240.0	．166522649E＊08	－1224695C5E＊08	． $542063374 \mathrm{E*} 06$	． $294402788 \mathrm{E}+08$	0.03272	0.37759
250.0	． 175034656 F ＊08	．153558183E408	－541063374E＋06	－ $33440347 \mathrm{JE}+0 \mathrm{O}$	0.03717	0.41476
260.0	－15740080IE＋0g	．121520174E＋08	． $541063374 E+06$	． $274339610 \mathrm{E}+08$	0.03049	0.44525
270.0	．218671831E＊08	． $157451411 \mathrm{E}+0 \mathrm{O}$	．721417831E406	－3E333740E＋02	0.04261	$0.4 E 786$
280.0	－129511721E＋08	－162099607E＋08	． $541063374 E+06$	－356932161E＋08	0.03967	0.52753
290.0	． $187589537 \mathrm{Et08}$	． $155543472 \mathrm{E}+08$	0.	－ $343233009 \mathrm{EtO8}$	0.03815	0.56568
300.0	－209866277E408	－210292705E＋08	－108212675E＋07	． 431000249 tog	0.04791	0.61359
310.0	． 222657619 E －08	－191981566E＋08	． $180354458 \mathrm{E}+06$	． $406442790 \mathrm{E}+08$	0.04518 ．	0.65876
320.0	． $229884252 \mathrm{E}+08$	． 211450312 E 08	－901才72289E＊06	．450252287E＋0e	0.05004	0.70881
330.0	－215619592E．0E	． $124963637 E+08$	． $54106337 \mathrm{LE+06}$	． $406193863 \mathrm{E}+08$	0.04515	0.75395
340.0	． $165261517 \mathrm{E}+08$	．1876323E7E＋08	．901772289E＋06	－ 361911607 EtOR	0.04023	0.79418
350.0	． $228098224 E+08$	．210544161EE406	．901772289E＋06	－44284756SE＋08	0.04922	0.84340
360.0	． $171109049 \mathrm{E}+08$	．163972862E408	． $541063374 E+06$	－ $36 C 492544 E+08$	0.04007	0.88347
370.0	．1405286CSE＋08	－131917678E＋08	． $360108916 \mathrm{E}+06$	． $276053376 E+08$	0.03068	0.92415
380.0	． $847568341 \mathrm{~F}+07$	．1340日e332E＋08	．18035445EE．06	． 22065 T 11 ftog	0.02453	0.93868
390.0	－652017819E407	．896249455E＋07	0.	．1548ご67315408	0.01721	0.93589
400.0	． 373065509 E 07	．65：089136E＋07	0.	． $102415464 \mathrm{E}+08$	0.01138	0.96727
410.0	． $212363013 \mathrm{E}+07$	． $431474119 \mathrm{E}+07$	0.	． $643 \mathrm{E} 37132 \mathrm{E}+07$	0.00726	0.97443
420.0	．124017336E407	． $348526074 \mathrm{E}+07$	0.	． $472343420 \mathrm{E}+07$	0.00525	0.91968
430.0	． 283625351 E 07	． $220533469 \mathrm{E}+07$	0.	． $410158820 \mathrm{E}+07$	0.00456	0.96424
440.0	． $167239470 \mathrm{E}+107$	－197066577E＋07	0.	－364306047E＋07	0.00405	0.98829
450.0	．403264337EA0́	． $153651959 \mathrm{E}+07$	0.	．193978393E＊07	0.00216	0． 99044
460.0	． 3 E2057197E＊06	． $642846443 E+06$	0.	．103090364E407	0.00115	0.99159
470.0	．148932583E－06	－1091724C1E＋07	0.	． $124065669 \mathrm{E}+07$	0.00138	0.99297
480.0	0.	． 1150064 C6E＊07	0.	． 115006406 F 4 O	0.00128	0.99424
490.0	．ROOL62110e40S	．77210001PE1）6	0.	． $852116229 \mathrm{E}+06$	0.00095	0.99519
500.0	0.	． 775465749 E （05	0.	． $775465749 \mathrm{E}+05$	0.00009	0.99528
510.0	0.	．67C096517E406	0.	． $670096577 E+06$	0.00074	0.99602
520.0	0 ．	． 688697252 EP 06	0.	．688697252E＋06	0.00077	0.99679

Table D-4.--Population estimates by sex and size group for Greenaland turbot (cont'd).

LENGIH(MM)	** MALFS ***	* FEMALES
530.0	0.	. $790097178 \mathrm{E}+05$
540.0	0.	- $234024652 \mathrm{t}+06$
550.0	0.	. $917348759 \mathrm{E}+05$
710.0	0.	. $775465749 \mathrm{E}+05$
740.0	c.	$.514538443 \mathrm{~F}+06$
820.0	0.	. $417812813 E+05$
890.0	0.	-51453E443E406
TOTAL	.4593214E5E409	.420463202E+09

** UNSEXED **	*** TOTAL ***
0.	. 79 C09717 EE405
0.	- $234084692 \mathrm{E}+06$
0.	- $917348759 \mathrm{E}+05$
0.	- $775465745 E+05$
0.	. $514538443 \mathrm{E}+06$
0.	. 417318313 E 05
0.	-51453E443E+06
-1657650y2E+00	. $898361196 E+09$

PROPORTION

0.0000%

0.00010
0.00009
0.00057
0.00005
0.00057

CUMU
PROPORIION
0.99688
0.99714
0.99724
0.99732
0.99732
0.99790
0.99794
0.99794
0.99 e5i

Table D-5.--Population estimates by sex and size group for Alaska plaice.

Table D-6.--Population estimates by sex and size group for flathead sole.

LENGTH(MM)	*** halfs ***	** fenales **	** UNSEXED
60.0	0.	0.	. $393171214 \mathrm{E}+05$
70.0	0.	0.	. 2376784 EEE +0E
80.0	0.	0.	. $204004293 E+07$
90.0	. $408454034 E+06$	0.	. $120149186 \mathrm{E}+07$
100.0	. $204315167 E+06$. 920 E91725F.05	- $475185614 \mathrm{E}+06$
110.0	. $674961116 E+06$. $496294453 \mathrm{E}+06$	-44166210EE406
120.0	. $154512193 E+07$. $153024126 E+07$. $675230159 \mathrm{E}+06$
130.0	. $3402291615+107$. $265559624 E+07$	-784E42441E+06
140.0	. $343038902 \mathrm{E}+07$. $249184397 \mathrm{E}+07$. $496553460 E+06$
150.0	. $465546723 \mathrm{E}+07$. $363508449 \mathrm{E}+07$	0.
160.0	. $62374625 \mathrm{EE}+07$. $538141138 \mathrm{E}+07$. $491105659 E+05$
170.0	. $967262638 \mathrm{E}+07$. $114070243 E+08$	0.
180.0	.141184590E+0E	.168851154E+08	0.
190.0	. $171663451 \mathrm{E}+08$. $1807084 \mathrm{COE}+08$	0.
200.0	. $150833099 E+08$.16015 146 E (08	0.
210.0	. 157655552 E - U8	. $13979807 \mathrm{EE}+08$	0.
220.0	. $21.3050491 \mathrm{E}+03$.144091572E+06	0 .
230.0	. 1 E86380E1E.08	. 2023E91EEE*08	0.
240.0	. $211737340 E+08$. $256298253 E 408$	0.
250.0	. $265274752 \mathrm{E}+08$. $315728980 \mathrm{E}+08$	0.
260.0	. $198223494 \mathrm{E}+08$. $290 \mathrm{E} 4524 \mathrm{fF}+\mathrm{DB}$	0.
270.0	. 18644 -005E+08	. 330471671 E*08	0.
280.0	. 16740 UR23E+0E	. $361744665 E+08$	0.
290.0	. $107936911 E+08$. 304397651 E 408	0.
300.0	. 113364567E+C8	. 290388686 E 408	0.
310.0	. $130405255 E+08$. $254157155 \mathrm{~F}+1) 8$	0.
320.0	-12345d94CE408	-169006493E+08	0.
330.0	-912855671E+07	$.142354 \mathrm{EO4E+OE}$	0.
340.0	. $441886010 \mathrm{E}+07$. $825919213 \mathrm{E}+07$	0.
350.0	. 313050111E.07	. $8414788 \mathrm{COE}+07$	0.
360.0	. 14566415 EE+07	. $746452217 \mathrm{E}+07$	D.
370.0	- $556025597 E+06$	$.59153703 \mathrm{AE}+07$	0.
380.0	. $415140649 \mathrm{E}+06$.462989366E407	0 .
390.0	. $8395424345+05$.478479218E+07	0.
400.0	0.	. 28181676 CE 407	0.
410.0	. $997131804 \mathrm{E}+05$. $213160309 E+07$	0.
420.0	. $715335536 E+05$.942404201E+06	0.
430.0	0.	. $712493621 E+06$	0.
440.0	0.	. $3275500628+1$ 6	0.
450.0	0.	.9930E3107E406	0.
460.0	0.	.381805031E+06	0.
500.10	0.	$.155349154 E+16$	D.
TOTAL	. $302421462 \mathrm{E}+09$. 4476385116409	. $646131473 E \cdot 07$

PR CPORTION	CUMUL ATIVE PROPDRIION
0.00005	0.00005
0.00032	0.00037
0.00270	0.00306
0.00213	0.00519
0.00105	0.00624
0.00213	0.00837
0.0 .0496	0.01333
0.00907	0.02240
0.00848	0.03088
0.01096	0.04184
0.01569	0.05753
0.02786	0.08540
0.04098	0.12638
0.04658	0.17296
0.04121	0.21406
0.03932	0.25336
0.04721	C. 30059
0.05248	0.35307
0.06187	0.41494
0.07680	0.49174
0.06455	0.55638
0.06833	0.62471
0.06994	0.69466
0.05450	0.74916
0.05344	0.80260
0.05098	0.E5357
0.03866	0.89223
0.03088	0.92312
0.01676	0.93983
0.01526	0.95514
0.01179	0.96693
0.00855	0.97548
0.00657	0.98215
0.00644	0.98859
0.00373	0.99231
0.00275	0.99526
0.00134	0.99660
0.00094	0.99756
0.00043	0.99798
0.00131	0.99929
0.00050	0.97979
0.00021	1.00000

LENGTH(MA)	*** MALES ***	* femates **	**	UNSEXED	$\bullet \bullet$	*** TOTAL ***	PR OPORTION	CUHULATIVE. PROPORIIDN	
110.0	. 4352674 EEE+05	0.	0.			. 455267488 E 05	0.00006	D. 00004	
120.0	. 1567 E4461f*06	0.	0.			-156724461E006	0.00014	0.0001 P	
130.0	.462917051E405	. $145325821 E+06$	0.			-191617527E06	0.00017	0.00036	
140.0	. $346517453 \mathrm{E}+06$	0 -	0.			- $346517453 E+06$	0.00031	0.00067	
150.0	- $571068427 \mathrm{ta6}$. $399629049 \mathrm{~F}+06$	0.			- $970697475 \mathrm{E}+06$	0.00088	0.00155	
160.0	. 132630017 E407	. $890437426 E+06$	0.			-221673760E407	0.00201	0.00357	
170.0	- 3i9990052E*07	. 277790 E68E+07	0.			. $557780921 \mathrm{E}+07$	0.00501	0.00863	
120.0	. $337293979 E * 07$. $435144128 E+07$	c.			. $776030107 E+07$	0.00705	0.01568	
190.0	. $503649985 \mathrm{E}+07$. 3336167 2E+07	0.			- $897266757 \mathrm{E}+07$	0.00815	0.02383	
200.0	. $4906727505+07$. 3369249 ¢2F+07	0.			. $8276037215+07$	0.00752	0.033135	
210.0	. $406542542 E+07$. $194485123 E+07$	0.			. $601027666 \mathrm{E}+07$	0.00546	0.03581	
220.0	.101536114E*07	.101349E43E407	0.			- $208885957 \mathrm{E}+07$	0.00190	0.c3ET1	
230.0	.457688518E+06	.187591753E406	0.			. 6452802712.06	0.00059	0.03930	
240.0	- 54240885 3E + C6	. $512734717 \mathrm{~F}+06$	0.			.105514357E407	0.00096	0.04025	
250.0	- $566492262 \mathrm{E}+06$	$.625320853 E+D E$	0.			$.129100315 F+07$	0.00108	0.154134	
260.0	.681738987E*0G	$.142838044 E+07$	0.			. 211011943 C 07	0.60192	0.04325	
270.0	. $322065709 E+07$	-183255829E+07	0.			. $50536153 \mathrm{EE407}$	0.00459	0.04784	
280.0	- 37345240 EEP 107	. $365562024 \mathrm{E}+07$	0.			-739014433E407	0.00671	0.05456	\vdash
290.0	. 604066997 E -07	. $559376319 E+07$	0.			. $116344332 E+02$	0.01057	0.06513	0
300.0	-624)03282E407	. $7904 \mathrm{EC748E+07}$	0.			. $167519263 \mathrm{E}+0 \mathrm{E}$	0.01522	0.08034	
310.0	. 175204543 E +1)8	. $103460735 E+08$	0.			- $278665278 \mathrm{E}+08$	0.02531	0.10566	
320.0	. 187930537E*CB	. $133620633 E+08$	0.			. $32155117 \mathrm{CE}+0 \mathrm{E}$	0.02921	0.13487	
330.0	-1571587ESE+CE	.153774419E+08	0.			. $316931205 E+08$	0.02 El 9	0.16366	
340.0	. $184603114 \mathrm{E}+08$. $164022342 E+08$	0.			- $3486254565+08$	0.03167	0.19535	
350.0	.193171055E+08	.187915385E408	0.			. $381692440 \mathrm{E}+0 \mathrm{C}$	0.03461	0.23000	
360.0	. $211538487 \mathrm{E}+0 \mathrm{E}$.16E245051E408	0.			- $395783538 E+08$	0.03632	0.26632	
370.0	. $270035178 \mathrm{E}+08$. $245950133 \mathrm{E}+08$	0.			- $516025312 \mathrm{E}+00$	0.04688	0.31320	
380.0	. $247333430 E+C 8$. 2E4E33534E+08	0.			. $532166963 E+08$	0.04834	0.36154	
390.0	- $265384166 E+1) 8$. $258715001 \mathrm{E}+08$	0.			-524103189E+08	0.04761	0.40915	
400.0	- $269498627 E+08$. $273117834 \mathrm{E}+08$	0.			- $542616461 \mathrm{t}+08$	0.04929	0.45844	
410.0	- $3349012 \times 9 \mathrm{E} 0 \mathrm{O}$	- 3u9E58260Efor	0.			. $644739559 \mathrm{~F}+08$	0.05857	0.51701	
420.0	. $505972046 \mathrm{E}+08$. $288955281 E+08$	0.			- $594927327 \mathrm{E}+08$	0.05434	0.57105	
430.0	- $212 \times 05732 \mathrm{Cos}$	- 303682949E+0E	0.			- 57 Ef 8t GeOF*OE	0.05240	0.62345	
440.0	. $248587720 E+02$. $275345826 \mathrm{E}+08$	0.			. $543733546 \mathrm{E}+08$	0.04941	0.67286	
450.0	- $258311902 \mathrm{E}+\mathrm{Ca}$	-301779047E +08	0.			- $560290949 E+08$	0.05090	0.72376	
460.0	- 220480100 Ct 0 E	-212686615F+08	0.			- $4331667155+08$	0.03935	0.76311	
470.0	-181281580E+0a	-189297610E*08	0.			$-370579190 E+08$ $-3730100+0 E+08$	0.03366 $0.0338 B$	0.79677	
490.0	-153833529E+08	.153317107f+UE	0.			- $307150636 \mathrm{~F}+0 \mathrm{E}$	0.02790	0.85856	
500.0	$.134743166 E+08$.160019035E.08	0.			- $294762221 E+08$	0.02678	0.88533	
510.0	. $800144322 E+07$. 1213847415.08	0.			. 201379173 F .08	0.01829	0.90363	
520.0	. $895325147 \mathrm{E}+07$. $109746490 E+08$	0.			. $199279005 \mathrm{E} * 08$	0.01810	0.92173	
530.0	. 63758068 EE407	.897215787E+07	0.			-153479647E+08	0.01394	0.93567	

LENGTH(HH)	** MALES ***	* Females	**	UNSEXED	**	*** tctal ***.
540.0	. $504663565 E+07$	$.732124768 E+07$	0.			. 123678835 E 40 C
550.0	-512752642E+107	. $612574279 \mathrm{E}+07$	0.			. $113132692 E+08$
560.0	- $286998684 \mathrm{E}+07$	$.483071592 \mathrm{E}+07$	0.			. 77 C070276E+07
570.0	. $265566099 \mathrm{E}+07$. $375596796 \mathrm{E}+07$	0.			. $641582896 E+07$
580.0	. $239470156 \mathrm{E}+07$. $413506594 E+07$	0.			. $652976750 \mathrm{E}+07$
590.0	.132649641E*07	-361920610E+07	0.			. $494570312 E+07$
600.0	. $117496244 \mathrm{E}+07$. $143841127 \mathrm{E}+07$	0.			. $261337371 \mathrm{E}+\mathrm{U} 7$
610.0	- $933883672 E+06$.181685988E+07	0.			- $275074355 E+07$
620.0	.143193130E*07	. $131860655 \mathrm{E}+07$	0.			. $275053784 \mathrm{E}+07$
630.0	. $566983037 E 406$. $113344260 \mathrm{E}+07$	0.			. 17 C0425645+07
640.0	-627182742E•06	-819168161E406	0.			-144695090E+07
650.0	-48E26372EE+06	. $626824215 E+06$	0.			. $111508794 \mathrm{E}+07$
650.0	. 153334332 C +0́	. $239492735 \mathrm{E}+06$	0.			. $392827066 \mathrm{E}+06$
670.0	. $207299159 E+06$.6445EI983E+06	0.			-851E81143E906
680.0	. 265458916 E 408	- $210713822 E+06$	0.			-47617263EE*06
690.0	. $132312769 \mathrm{E}+06$. $622027435 E+06$	0.			. $754340204 \mathrm{E}+06$
700.0	- $274103759 E+06$. $390343121 E+06$	0.			. 66444687 9E+06
710.0	. 351 1 $18257 E+06$. $575399041 E+06$	0.			-927217298E+06
120.0	- $294468405 \mathrm{E}+06$. 317753501 E 06	0.			-612221905E+06
130.0	. 327597112 E 06	. 2451999755006	0.			. 572797107 E 06
740.0	. $863313903 E+05$	-800 14714E+06	0.			. $287146104 E 406$
750.0	. $254090516 \mathrm{E}+06$	-347375222E+0E	0.			. 60146573 EE +06
760.0	. $226338779 E+06$. $355297477 \mathrm{E}+06$	0.			- $581636256 \mathrm{E}+06$
770.0	.616117172E+05	. $384527419 \mathrm{E}+06$	0.			-44E139136E+06
780.0	. 7152940528.405	.138119147E+96	0.			. $209648552 E+106$
790.0	0.	. $170638397 E+06$	0.			. $19 \mathrm{C638397E406}$
800.0	. $863313903 \mathrm{E}+05$. $163451119 E+06$	0.			- $249782510 \mathrm{E}+06$
820.0	. $7031345815+05$. 1525425 c7E+06	0.			- $222855965 \mathrm{E}+05$
830.0	. $128139066 \mathrm{E}+06$. $108832492 \mathrm{E}+06$	0.			- $236971558 \mathrm{E}+06$
640.0	0 .	. S17ET7566E+05	0.			- 517817566E+05
E50.0	. $500641792 E+05$	0.0	0.			- $500641792 \mathrm{E}+05$
660.0	0.	. $954673291 E+05$	0.			- $954673291 E+05$
670.0	0.	- 863313903E+05	0.			- $863513903 \mathrm{E}+05$
TOTAL	. $545010258 \mathrm{E}+09$. 555811800 C -09	0.			. 11cos2207E+10

PROPORIION
0.01124
0.01028
0.00700
0.00583
0.00593
0.00449
0.00237
0.00250
0.00250
0.00154
0.00131
0.00101
0.00101
0.000036
$0.0007 ?$
0.00077
0.00043
0.00069
0.00060
0.00084
0.00056
0.00052
0.00081
0.00081
0.00055
0.00053
0.00053
0.00041
0.00041
0.00019
0.00017 0.00023 0.00020 0.00022 0.00005 0.00005 0.00005 0.00059

CUMUL ATIVE PRCPORIION 0.94691 0.95719 0.96418 0.97001 0.97594 0.98043 0.98281 0.98531 0.987 e1 0.98935 0.99066 0.99168 0.99203 0.99281 0.99324
0.99393 0.99393
0.99453 0.99537 0. 99593 0.99645
0.99725 0.997 en 0.99833 0.99833
0.99873 0.99873
0.59892
0.99910
0.97932
0.99953
0.99974
0.99979
0.99983
0.99972
1.00000

Table D－8．－－Population estimates by sex and size group for Pacific halibut．

LENGTH（MM）	＊	males	＊＊＊	＊＊	females	＊＊	＊＊UNSEXED＊＊	＊＊TOTAL＊＊＊	PROPCRTION	CUMUL IIIVE PROPORTION
110.0	0.			0.			．889779E56E405	．889779366F．05	0.00206	0.00206
120.0	0.			0.			． 37273048 E405	． $3727 \pm 304 \mathrm{CE}+05$	0.00036	0.00292
170.0	c．			0.			． $532394649 \mathrm{E}+05$	． $5323546495+05$	0.00123	0.00416
180.0	0.			0.			． $923425336 E+05$	． $923429336 E+05$	0.00214	0.00630
200.0	0.			0.			． 1748359548.06	． $174835954 \mathrm{E}+06$	0.00405	0.01035
210.0	0.			0.			．112368529E．06	．11236E529E＋06	0.00260	0.01295
220.0	0.			0 ．			．137167311E＋06	．137167311E＋06	0.00318	$0.01 \in 12$
230.0	0.			0.			．187822499E＊06	．187822499E＋06	0.00435	0.02047
240.0	0.			0 ．			．118167533＊＊06	．118167533E＊06	0.00274	0.02321
250.0	0.			0.			．4849396385406	－484939638E06	0.01121	0.03444
260.0	0.			0.			． $109575472 \mathrm{E}+07$	． $109575492 \mathrm{E}+07$	0.02538	0.05982
270.0	0.			0.			． $201690511 \mathrm{E}+07$	． 201690511 t 07	0.04671	0.10653
280.0	0.			0.			．197645147E＋07	． $197645147 \mathrm{E}+07$	c．04578	0.15231
290.0	0.			0.			－1971622E6E＋07	－197土と2286E＊07	0.04567	0.19798
300.0	0.			0.			． $26846081 \mathrm{SE}+07$	． 268460319 E － 7	0.06218	$0.26 \mathrm{Cl6}$
310.0	0.			0.			． 196380836 E 07	－1尹ESE0836E＊07	0.04548	0． 30564
320.0	0.			0.			． $213806123 \mathrm{E}+07$	－ $213206123 E+37$	0.04952	0.35516
330.0	0.			0.			． 2346195185.07	－ $234619518 E \times 07$	0.05434	0.40950
340.0	0.			0.			－260122278E＊07	－260122216F． 01	0.06025	0.46974
350.0	0.			0.			． $356693131 \mathrm{E}+07$	． $356693131 \mathrm{E}+07$	0.08308	0.55282
360.0	0.			0.			． 263025962 CPO	－263025962E＋07	0.06092	0.61374
330.0	0.			0.			．15365406E＊07	－153669406E＋07	0.03559	0.64933
380.0	0.			0.			．169629255E＋07	－169629255E＊07	0.03929	0.68861
390.0	0.			0.			．100104749E＋07	． $1001047495+07$	$0.0231 E$	0.71180
400.0	0.			0.			．671197213E＋06	． $611197273 \mathrm{t}+06$	0.01555	0.72734
410.0	0.			0.			． 533432472 EE 06	－ $533432472 E+06$	0.01235	0.73910
420.0	0.			n．			． 380069535 E 06	． 380067535 CO 06	0.00880	0.14 E59
430.0	0.			0.			． 247565917 ［06	． $247565917 E+06$	0.00573	0.75423
440.0	0.			0.			． $407408386 E .06$	－407408386E＊06	0.00944	0.76367
450.0	0.			0.			． $230658367 E+06$	． $2306583 \mathrm{afE+06}$	0.00534	0.76901
460.0	0.			0.			． $8568029 J 6 E+06$	． 856802976 CH 06	0.01984	0.78886
470.0	0.			0 ．			．248943659E＋06	． $2489436595+06$	0.00571	0.79462
460.0	0.			0.			． 79 9107687E＋06	． $798707687 \mathrm{E}+06$	0.01250	0.81312
490.0	0.			0.			． 4136810 BEE 06	． 41368108 EE＋06	0.00958	0.82210
500.0	0.			0.			．807297510E＋05	－ $207297570 \mathrm{E}+05$	0.00187	0.22457
510.0	0.			0.			． $672432512 \mathrm{E}+06$	．672432512E＊06	0.01557	$0.84 C 15$
520.0	0.			0.			．37107r9a5E．06	－371071985E406	0.00859	0.84874
530.0	0.			0.			． $265316244 \mathrm{E}+06$	． 246316244 CO 06	0.00510	0.85444
540.0	0.			0.			． $798983960 E 406$	． $7989839606+06$	0.01850	0.87295
550.0	0.			0.			． 33635923 8E406	－336359238E＋06	0.00719	0.86074
560.0	0.			1.			． $110704928 \mathrm{E}+06$	． $810704928 \mathrm{E}+06$	0.01878	0.89952
570.0	0.			0.			－177762882E406	－173762982E＊06	0.00412	0.90363
580.0	0.			0.			．336627113E＋06	－330621713E＋06	0.00784	0．91148

Table D-8.-Population estimates by sex and size group for Pacific halibut (cont'd).

LENGTH(MM)	** Males	*** **	ferales	**	* UNSEXEC **	*** Total ***
590.0	0.	0.			- 21EEP8501Et06	- 21 Reees61E*06
600.0	0.	0.			. $399643438 E+06$	- 39964343 EE*06
610.0	0.	0.			-125506633E+0E	. 125506633 E +06
620.0	0.	0.			. $165661976 \mathrm{E}+06$. $165661976 E+06$
630.0	0.	0.			. $112434810 \mathrm{E}+06$	-112434810E+06
640.0	0.	0.			.1669E3449E*06	-1669E3449E*06
650.0	0 .	1.			. 2655764 97E 06	. $265764397 \mathrm{E}+06$
660.0	0.	0.			. $215590598 \mathrm{E}+06$	- $215590598 \mathrm{E}+06$
670.0	0.	0.			.66517671PE+05	. $665176718 E+05$
680.0	0.	0.			. 804888805 C 05	. $804888805 \mathrm{E}+05$
690.0	C.	0.			-1E5716614E+06	-1E5716614E+06
700.0	0.	0.			. $414166635 E+05$. $414166635 E+05$
710.0	0.	0.			. $201541411 E+06$	-201541411E*06
720.0	0.	0.			-922932696E+05	-922932696E+05
730.0	0.	0.			$.284937257 E+06$. $284937257 E+06$
750.0	0.	0.			-433938105E+05	-433938105E+05
7 80.0	0.	0.			. $391979137 E+05$	-391979137E+U5
790.0	0.	0.			. $759937161 E+05$. $759937161 E 405$
800.0	0.	0.			. $530985709 \mathrm{C}+05$	- $530985709 \mathrm{E}+05$
810.0	0.	0.			- $424 E 54807 E+05$. $424254807 \mathrm{E}+05$
830.0	0.	0.			.143069650E*06	. $143063650 \mathrm{E}+06$
$e \leq 0.0$	0.	0.			. $721993883 \mathrm{~F}+05$. 721993883 CH 05
270.0	0.	0.			. $762284342 E+05$	- $762284342 \mathrm{E}+05$
890.0	0.	0.			. $392821060 \mathrm{E}+05$	- 39282106 9E+05
900.0	0.	0.			. $1195 \mathrm{E} 35 \mathrm{EE}+06$	-11958635EE+06
910.0	0.	0.			. $127623983 \mathrm{E}+06$	-127623983E+06
940.0	0.	0.			. $704849985 \mathrm{E}+05$	- 704 E499E5E+05
1070.0	0.	0.			. $243336109 \mathrm{E}+05$	- $243336109 \mathrm{E}+05$
1010.0	0.	0.			-598659046E+05	- $598659046 \mathrm{E}+05$
1020.0	0.	0.			. $437965023 E+05$	-439965023F+05
1050.0	0.	0.			. $41051004 \mathrm{EE}+05$	- $410510046 \mathrm{E}+05$
1110.0	0.	0 .			-399106031E+05	- $399106031 E+05$
1330.0	0.	0.			. $424 \mathrm{E} 548 \mathrm{ClE}+05$.424054807E405
1470.0	0.	0.			. $445152015 \mathrm{E}+05$	-445152015E45
TOTAL	0 。	0.			.43176842EE*O8	. 4317 E6418E+08

Table D-9.--Population estimates by sex and size group for arrow-tooth flounder.

LENGTH(MM)	** HALES ***	** FEMALES **	** UNSEXED **	*** TOTAL ***	PRCPORTION	CUMULATIVE PROPORTION
70.0	0.	0.	. 67846336 EE 05	-678463366E405	0.00030	0.00036
90.0	0.	0.	. $866255791 E+05$	- $8662557 \pm 1 E+05$	0.00046	0.00082
100.0	. $678463366 E * 05$	0.	. $202126351 E+06$	-26991268EE+06	0.00144	0.00226
110.0	. 316291725 F -06	.161E97EG7E+06	. $519753475 \mathrm{E}+06$	- $997943066 E+06$	0.00532	0.00758
120.0	. 372409032 E 05	. 372409032 E 05	. $224504828 \mathrm{E}+06$	- 29e986634E*06	0.00159	0.00917
130.0	. $105330164 \mathrm{E}+05$	0.	-115590772E+06	- 1660 $73769 \mathrm{E}+06$	0.00099	0.01017
140.0	-248564464E406	.161897867E406	. $28875195 C E+05$. $435337524 E 406$	0.00234	0.01251
150.0	- 203225848 E -06	. $565089079 E 405$	0.0	. $259534756 \mathrm{E}+06$	0.00136	0.01389
160.0	. $2562165265+86$. 36015535 EF*06	. B01288630E+05	. $696500747 E+06$	0.00371	0.01760
170.0	. $401624857 € 406$.991910967E+06	. $293992823 \mathrm{E}+06$	- $268752865 E+07$	0.0089%	0.02660
180.0	- 8 37435679 t + 6	$.120146417 \mathrm{E}+07$	0.	. $203891985 \mathrm{C}+07$	0.01087	0.03747
190.0	-125U1169EE+07	.1139730615407	0.	. 23904477 EE*07	0.01274	$0.05 C 21$
200.0	. $660456557 E+06$. $1223344 \mathrm{COE}+07$. $147975200 \mathrm{E}+06$. $203177576 \mathrm{E}+07$	0.01083	0.06104
210.0	$.103410972 \mathrm{~F}+07$. $1254025505+01$.8012E6630E*05	. 256 E 2554 EF*07	0.01262	0.07366
220.0	. $130857684 E+07$	-955965537E+06	0.	. 22645423 EEP07	0.01207	0.08573
230.0	-97206830EE+06	-775569684E+06	0.	. 174 E43807E*O7	0.00932	0.09505
240.0	-166359630F.407	.124156474E*07	.672463366E*05	- 31720073 EE+07	0.01691	0.11195
250.0	- $371065432 E+07$. $274207774 \mathrm{E}+07$	0.	. $645273206 E+07$	0.03439	0.14635
$2 \in 0.0$. 614514577 E4 07	-3672E9122E*0才	0.	-9E17E4300E+07	0.05233	$0.19 E 68$
270.0	.905652586E+07	. $593954434 E+07$	0.	. $149780702 \mathrm{E}+08$	0.07983	0.27 ES1
280.0	. $102157132 \mathrm{E}+08$.6616C7JE6E407	0.	.168917E3EE*OE	0.09003	0.36854
290.0	. $761748931 \mathrm{E}+07$.716S2E3E1E407	0.	. $147627731 E+08$	0.07879	0.44733
300.0	. $745666037 \mathrm{E}+07$. $73136584 \mathrm{CE}+07$	0.	. 147703188 C +08	0.07872	0.52606
310.0	.475453205E+07	. $695401539 \mathrm{E}+37$	0.	. $117085464 \mathrm{E}+08$	0.06241	0. 58846
320.0	. $404262364 E+07$.426255585E0107	0.	. 831117950 E*OT	0.04430	0.63276
330.0	- $300356939 E+07$	- $376343399 E+07$	0.	. $676700338 E+07$	0.03607	0.66883
340.0	-408534994E+07	-2J $2694823 E+07$	0.	. 687229817E+07	0.03663	0.70546
350.0	. $265096830 E+07$. $307430889 E+07$	0.	. 572527718 E +07	0.03052	0.73597
360.0	. $229581737 \mathrm{E}+07$. $221784912 \mathrm{E}+01$	0.	. 457366849 E 97	0.02438	0.76035
370.0	. $124924530 \mathrm{~F}+07$	$.355122312 E+07$	0.	. $4 E 0106842 E+07$	0.02559	0.78594
380.0	. 1371681 SEFOT	. $317676560 E+07$	0.	. $455044573 E+07$	0.02425	0.81019
390.0	. $793565724 \mathrm{EF}{ }^{\text {P6 }}$	$.223205840 E+07$	0.	- $302562412 \mathrm{E}+07$	0.01613	0.82652
400.0	. $317362214 E+06$. $231268572 \mathrm{E}+07$	0.	. $263004794 \mathrm{E}+07$	0.01402	0.84034
410.0	-455029182E.06	. $124156674 \mathrm{E}+07$	0.	-169659593E407	0.00904	0.84938
420.0	- $323320440 \mathrm{E}+06$	-9E92966EEE+06	0.	. $131261713 E+07$	0.00700	0.85638
430.0	. 28783037 CE*06	. $102600738 \mathrm{E}+07$	0.	-131323775c*07	0.00700	0.86338
440.0	. $102142287 \mathrm{E}+06$	-6456967C3E+06	0.	$.7480 \leq 69705.06$	0.00309	0. 86737
450.0	. 250782977 t 06	. 755501643 E +0E	0.	-10c628462E+07	0.00536	0.87273
460.0	. $619426567 \mathrm{E}+05$. $349556040 \mathrm{E}+06$	0.	. $411498697 E+06$	0.00219	0.87492
470.0	0.	. $1265431016+05$	0.	.726543101 E 05	0.00039	0.87531
480.0	. $565089079 \mathrm{E}+05$. $555191147 \mathrm{E}+06$	0.	. 61170005 SE 06	0.00326	0.87257
490.0	0.	. $7265431 C 1 E+05$	0.	. 726543101 E 05	0.0003%	0. e7e96
500.0	. $117741747 \mathrm{E}+06$.1453065 CDE*06	0.	$.263150367 t+06$	0.00240	0.88036

	CUHULAIIVE
PROPORTION	PROPORIION
0.00697	$0.0 C E 99$
0.00699	0.01398
0.00699	0.02097
0.02097	0.04195
0.04894	0.09099
0.09034	0.18122
0.10487	0.28610
0.09761	0.38371
0.12635	0.56006
0.15415	0.65421
0.08363	0.73784
0.08176	0.81961
0.09537	0.91498
0.03496	0.94993
0.02359	0.77353
0.00448	0.97801
0.00923	0.98726
0.00699	0.99424

Appendix EAge-length Keys for Principal Species of FishAppendix E presents age-length keys for principal species of fish (sexescombined) for which age data were collected during the 1980 demersal trawlsurvey.
List of Tables
Table Page
E-1. Age-length key for walleye pollock 158
E-2. Age-length key for yellowfin sole 160
E-3. Age-length key for rock sole 161
E-4. Age-length key for flathead sole 162
E-5. Age-length key for arrowtooth flounder 163
E-6. Age-length key for Greenland turbot 165
E-7. Age-length key for sablefish 166

$\begin{aligned} & \text { LEN } \\ & \text { GTH } \end{aligned}$	$\begin{aligned} & \text { AVG } \\ & \text { AGE } \end{aligned}$	$\begin{aligned} & \text { STD. } \\ & \text { DEY. } \end{aligned}$	FREQUENCY	$\begin{array}{r} \text { AGE } \\ 0 \end{array}$	$\begin{array}{r} \mathbf{I N} \\ 1 \end{array}$	$\begin{gathered} \text { YEA, } \\ 2 \end{gathered}$	S) 3	4	5	6	7	E	9	10	11	12	13	14	15	16	17	10	19	20	21	22	23	24	25	264
***	*****	****	*****	***	\cdots	-	***	***	***	**	***	*		**	*	**	**	*	**	*	*	*	**	*	**	*	*	- **		***
80	2.00	0.00	3	0	0	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
90	2.40	0.55	5	0	0	3	2	0	0	0	0	0	0	9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
100	3.00	0.00	14	0	0	0	14	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
110	3.19	0.51	21	0	0	0	18	2	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
120	3.46	0.56	26	0	0	0	15	10	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
130	4.04	0.73	25	0	0	0	5	15	4	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
140	4.18	0.48	28	0	0	0	0	24	3	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
150	4.36	0.64	25	0	0	0	0	15	5	2	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
160	4.68	0.60	31	0	0	0	0	12	17	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
170	5. 38	0.68	29	0	0	0	0	1	18	8	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
180	5.84	0.71	32	0	0	0	0	0	12	13	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
190	. 6.40	1.38	30	0	0	0	0	1	6	11	9	0	1	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
200	6.60	0.88	35	0	0	0	0	0	3	13	15	3	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
210	7.00	1.40	37	0	0	0	0	0	4	9	19	2	1	3	1	0	0	0	0	3	0	0	0	0	0	0	D	0	0	0
225	7.34	1.45	35	0	0	0	0	0	2	9	11	5	5	2	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
230	7.70	1.58	37	0	0	0	0	0	0	10	10	6	6	3	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
240	9.08	1.60	38	0	0	0	0	0	0	0	8	8	6	8	5	3	0	0	0	0	0	0	1	0	0	0	0	0	0	00
250	9.75	2.03	40	0	0	0	0	0	0	0	ع	4	6	7	8	3	2	2	0	3	0	0	0	0	0	0	0	0	0	0
260	10.49	1.69	41	0	0	0	0	0	0	0	3	2	5	11	7	8	5	0	0	0	0	0	0	0	0	0	0	0	0	0
270	10.60	1.65	40	0	0	0	0	0	0	0	2	1	6	11	9	6	3	2	0	0	0	0	0	0	0	0	0	0	0	0
280	11.00	1.52	37	0	0	0	0	0	0	0	1	2	3	e	6	14	5	0	0	0	0	0	0	0	0	0	0	0	0	0
290	11.65	1.89	37	0	0	0	0	0	0	0	0	0	5	5	8	9	6	1	1	1	1	0	0	0	0	0	5	0	0	0
300	11.95	1.51	38	0	0	0	0	0	0	0	0	0	2	5	7	10	9	3	2	0	0	0	0	0	0	0	0	0	0	0
310	12.09	1.35	32	0	0	0	0	0	0	0	0	0	0	4	7	10	5	5	1	0	0	0	0	0	0	0	0	0	0	0
320	12.90	1.68	31	0	0	0	0	0	0	0	0	0	0	0	7	6	10	4	1	2	0	1	0	0	0	0	0	0	0	0
330	13.29	2.12	24	0	0	0	0	0	0	0	0	0	0	2	3	4	5	4	2	2	1	1	0	0	0	0	0	0	0	0
340	13.95	1.57	20	0	0	0	0	0	0	0	0	0	0	0	1	0	ε	5	5)	0	0	1	0	0	0	0	0	0	0
350	14.01)	2.00	11	0	0	0	0	0	0	0	0	0	0	0	0	3	2	3	1	0	1	1	0	0	0	0	0	0	0	0
360	14.77	2.42	13	0	0	0	0	0	0	0	0	0	0	0	1	0	3	2	4	1	1	0	0	0	1	0	0	0	0	0
310	16.33	2.16	6	0	0	0	0	0	0	0	0	0	0)	0	0	1	0	1	1	1	1	1	0	0	0	3	0	0	0
380	18.33	4.93	3	0	n	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	1	0	0
390	14.50	0.71	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0
400	16.50	2.12	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1	0	0	0	0	0	0	0	0
410	17.50	2.12	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1	0	0	0	0	0	0	0
430	16.00	0.00	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0
440	17.00	0.00	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
TAL	B. 60	3.61	236	0	0	6	54	83	76	79	95	33	47	11	72	77	64	32	21	10	6	5	3	0	1	0	0	1	0	0

$\begin{aligned} & \text { LEN } \\ & \text { GTH } \end{aligned}$	$\begin{array}{r} \text { AVG } \\ \text { AGE } \\ * * * * \end{array}$	$\begin{aligned} & \text { STD. } \\ & \text { DEV. } \\ & \text { Wete } \end{aligned}$	FREOUFNCY *****	AGE	IN	$\begin{gathered} \text { YEAR } \\ 2 \end{gathered}$	5) 3	4 $+4 *$	5	5 6	7	18	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	264
120	2.00	0.00	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	5	0	0	0	0	0	0	0
-130	2.63	0.46		0.0		0.5		0.0		0.0		0.0		0.3		0.0		0.0		0.0		0.0		0.0		0.0		0.0		0.0
			3.0		0.0		2.5		0.0		0.0		0.0		0.0		0.0		0.0		0.0		0.0		0.0		0.0		0.0	
140	3.00	0.00	5	0	0	0	5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
150	2.91	0.54	11	0	0	2	8	1	0	0	0	- 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
160	3.08	0.29	12	0	0	0	11	1	0	0	0	- 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
170	4.22	0.44	9	0	0	0	0	7	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
180	4.30	0.67	10	0	0	0	1	5	4	4	0	- 0	0	0	0	0	0	0	0	3	0	0	0	0	0	0	0	0	σ	0
190	5.17	0.75	6	0	0	0	0	1	3	32	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
200	4.90	0.99	10	0	0	0	1	2	4	43	0	- 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
210	5.25	0.97	12	0	0	0	1	0	7	3	1	10	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
220	5.00	1.00	13	0	0	0	2	0	7	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
230	5.47	1.36	15	0	0	0	2	0	6	64	2	21	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
240	5.69	1.49	16	0	0	0	2	1	4	43	5	1	0	0	0	0	0	0	0	5	0	0	0	0	0	0	0	0	0	0
250	6.83	1.69	18	0	0	0	0	0	6	2	4	42	3	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
260	7.23	1.80	22	0	0	0	0	0	5	5 3	5	54	2	2	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
210 280	8.44	1.65	18	0	0	0	0	0	0	12	5	52	3	4	2	0	0	0	0	5	0	0	0	0	0	0	0	0	0	0
280 290	8.59 9.16	1.62 1.68	17	0	0	0	0	0	1	1 0	5 5	34	4	4	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
300	10.26	1.68	19	0	0	0	0	0	0	1) 0	5	3 2	0	7	3	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
310	10.78	1.66	18	0	0	0	0	0	0	0	0	1	3	7	2	:1	1	1 3	0	0	0	0	0	0	0 0	0 0	0	0 0	0	0
320	10.65	1.57	20	0	0	0	0	0	0	0	0	- 2	1	6	8	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0
330	10.38	1.12	13	0	0	0	0	0	0	0	0	0	3	5	2	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0
340	11.29	1.27	14	0	0	0	0	0	0	0	0	0	0	3	8	1	0	2	0	3	0	0	0	0	0	0	0	0	0	0
350	11.92	2.106	13	0	0	0	0	0	0	0	0	0	0	5	1	3	1	1	1	1	0	0	0	0	0	0	0	0	0	0
360	11.36	1.03	11	0	0	0	0	0	0	0	0	0	0	3	2	5	1	0	0	0	0	0	0	0	0	0	0	0	0	0
370 380	11.90 11.70	1.66 1.77	10	0	0	0	0	0	0	0	0	0	0	3	2	9	3	2	0	0	0	0	0	0	0	0	0	0	0	0
380	11.70	1.77	10	0	0	0	0	0	0	0	0	0	0	3	3	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0
390	12.40	2.17	10	0	0	0	0	0	0	0	0	0	0	2	3	1	0	2	1	1	0	0	0	0	0	0	0	0	0	0
400	12.80 13.61	1.43 1.03	5	0	0	0	0	0	0	0	0) 0	0	0	1	1	2	0	1	0	0	0	0	0	0	0	0	0	0	0
4	13.61 13.510	1.03	6	0	0	0	0	0	0	0	0	0	0	0	0	1	1	3	1	3	0	0	0	0	0	0	0	0	0	0
420 430	13.50 14.33	0.71 1.15	2	0	0	0	0	0	0	10	0	- 0	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0
440	14.33 13.00	1.15 2.83	3	0	0	0	-	0	0	0	0	- 0	0	0	0	0	1	0	2	3	0	0	0	0	0	0	0	0	0	0
450	13.00	0.00	2	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0	1	0	0	0	0	0	0	0	0	0	0	0
469	15.00	1.41	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0	0	0	0	0	0	0	0	0	0
479	15.00	1.41	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0	0	0	0	0	0	0	0	0	0
TOTAL	8. 37	3.46	379.1	0.0	0.0	3.5		18.0		26.0		22.0		62.0		22.0		16.0		4.3		0.0		0.0		0.0		0.0		0.0
							5.5		49.0		31.0		21.0		42.0		16.0		9. 0		0.0		0.0		0.0		0.0		0.0	

Table E-4.--Age-length key for flathead sole.

LENGIH CLAS SES HHICH HAVE REEA GENERATED USING INTERPOLATION
ARE MARKED HIIH AN ASTERISK (A).

Table E-5.--Age-length key for arrowtooth flounder.

Table E-5.--Age-length key for arrowtooth flounder (cont'd).

$\begin{aligned} & \text { LEN } \\ & \text { GIH } \end{aligned}$	$\begin{aligned} & A V E \\ & A G E \end{aligned}$	$\begin{aligned} & \text { STO. } \\ & \text { OEV. } \end{aligned}$	FREQUENCY	${ }_{0}^{A G E}$	$\underset{1}{\operatorname{CiN}}$		${ }_{2}^{A R S J}{ }_{3}$	4	5	6	1	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24		26	
***	****	****	****	***					***		***			***	***	***	**			***	***						***	***		...	
440	6.25	0.50	4	0	c		0	,	0	3	1	0	0	0	0	0	c	0	0	0	0	0	0	0	0	0	0	0	0	0	
450	7.33	1.15	3	0	c	0	00	0	c	1	0	2	0	0	c	c	c	0	0	0	0	0	0	0	0	0	0	0	0	0	
460	5.00	0.00	1	0	c		0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
470	8.00	0.00	1	0	0		0		0	0	0	1	0	0	-	0	0	0		0	0	0	0	0	0	0	0	0	0	0	
480	8.00	0.00	1	0	c		0	0	c	0	0	1		0	,	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
490	7.00	0.00	1	.	c		00	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	-	0	0	0	0	0	0	
500	7.80	0.97		0.0		0.0		0.0		0.0		1.0		0.0		0.0		0.0		0.0		0.0		0.0		0.0		0.0		C.C	
			2.5		0.0		0.0		0.0		1.0		0.5		0.0		0.0		0.0		0.0		0.0		c. 0		c. 0		0.0		
510	8. 00	0.82	4	0	0		00	0	0	0	1	2	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
520	7.00	0.00	1	0	0	0	0 O	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
530	7.00	0.00	2	0	0		00	0	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	
540	8.co	0.00	1	0	0		0	-	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	c	0	
550	8.33	0.00		0.0		0.0		0.0		0.0		6667		0.0		0.0		0.0		0.0		c. 0		0.0		0.0		0.0		0.0	
			1.0		c. C		0.0		c. 0		0.0		3333		0.0		0.0		c. 0		0.0		0.0		0.0		0.0		c. 0		$\stackrel{\square}{\circ}$
560	9.67	0.00		0.0		0.0		0.0		0.0		3333		0.0		0.0		0.0		0.0		0.0		0.0		0.0		0.0		0.0	
			1.0		0.0		0.0		c. 0		0.0		6667		0.0		0.0		0.0		0.0		0.0		0.0		0.0		c. 0		
570	9.00	0.00	1	,	0		00	0		0	0	,	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
5 ¢0	10.00	0.00	1	0	0		0	0	0	0	0	0	0	1	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
OTAL	3.63	1.49		0.0		79.0		92.0		22.0		9.0		1.0		0.0		0.0		0.0		0.0		0.0		0.0		C. 0		0.0	
			. 463.5		9.0		179.0		58.0		11.0		3.5		0.0		0.0		0.0		0.0		D_0		0.0		c. 0		c. 0		

lengit claj ses hhich have been generatec lising in tefpolation
ARE MARKED hIJH AN ASTEFISK (:).

lengit clas ses which have eeen generatec using interpolation are marked with an asterilsk (:).

Appendix FEstimated Age Composition for Principal Species of Fish
Appendix F presents estimates of the number of individuals at each age over the entire survey area.
Estimated numbers listed as "below minimum key length" and "above maximum key length" resulted from population data with lengths not covered by the age-length key.

List of Tables

Table Page
F-1. Population estimates by age for walleye pollock 168
F-2. Population estimates by age for yellowfin sole 169
F-3. Population estimates by age for Pacific cod 170
F-4. Population estimates by age for rock sole 171
F-5. Population estimates by age for flathead sole 172
F-6. Population estimates by age for arrowtooth flounder 173
F-7. Population estimates by age for Greenland turbot 174
F-8. Population estimates by age for sablefish 175

age clas	NUMBER	PRIPORTION	cumulative NuMBER	cumulative PROPIRTION	HEAN LENGTH	$\begin{aligned} & \text { STD DEV. } \\ & \text { OF LENGTH } \end{aligned}$
************	************		**************	**********	*******	********
EELON MINIMUM						
KEY LEMGTH	337.891	0.0001	337,891	0.0001	86.76	7.37
0	38.524.100	0.0065	38,861,990	0.0065	109.32	2.51
- 1	2.044.041.933	0.3426	2.082.903.923	0.3491	145.92	17.47
2	1.251.345.430	0.2064	3.314.249.353	0.5555	261.49	28.40
3	1.330.953.789	0.2314	4.635.203.141	0.7869	346.05	37.89
4	421,200,235	0.0706	5,116.403.377	0.8575	396.99	31.95
5	371.135.510	0.0622	5,487,538,887	0.9197	443.71	43.88
6	202.656.440	0.0340	5,690.295,327	0.9538	478.25	53.47
7	e4.016.130	0.0241	5.774.211.456	0.9671	507.59	51.69
8	81.481.103	0.0137	5.855,692,560	0.9814	559.70	46.60
9	44.241 .664	0.0074	5,879.934.224	0.9888	578.36	48.16
-10	35.851.238	0.0060	5.935.785.461	0.9948	581.11	62.98
11	16.055.728	0.0027	5.951.541.189	D. 9975	618.36	57.95
12	11.057-164	0.0019	5.962.898.354	0.9994	613.78	66.99
13	1.790.511	0.0003	5.964.688.865	0.9997	654.07	60.93
-14	1.480,664	0.0002	5.966.169.529	0.9999	609.29	58.08
15	482.826	0.0001	5,966,652.355	1. 0000	730.34	28.16
T01	5,966,652,355	1.0000	5.966.652.355	1.0000	282.75	126.18

Table F-2.--Population estimates by age for yellowfin sole.

AGE CLASS	NUMBER	PROPORTION	cuhulative NUMBER	CUMULATIVE PROPORTION	MEAN LENGTH	STD. DEV. OF LENGTH
************		*********	**************	**********	******	*********
BELOH MINIMUR						
KEY LENGTH	650.340	0.0001	650.340	0.0001	70.00	0.00
2	23.648.164	0.0018	24,298.504	0. 0019	84.03	4.91
3	1E2.942.235	0.0142	207.240.73日	0.0161	114.31	10.37
4	654.267.945	0.0517	871.508.683	0.0678	146.44	14.81
5	1.106.082.527	0.0860	1.977.591.210	0.1538	177.28	20.33
6	1.654.343.159	0.1286	3.631.934.369	D. 2824	200.96	21.03
7	2.271.795.801	0.1767	5.903.730.170	0.4591	219.01	23.63
8	8i4.141.371	0.0680	6,771.877.541	0.5271	235.52	18.64
9	1.156.253.566	0.0884	7.914.131.107	0.6154	247.58	24.06
10	1.521.096.956	0.1163	9.435.228.064	0.7337	255.91	25.20
11	1.237.564.185	0.0962	10,672.792.249	0.8300	266.34	24.68
12	1.152.629.539	0.0896	11,825,421,787	0.9196	275.46	22.72
15	$648.0 E 6.297$	0.0504	12,473,508,084	0.9700	284.74	26.57
14	236.010.057	0.0184	12.709.518.181	0.9883	289.47	31.07
15	12.385.248	0.0057	12.782.503.429	0.9940	316.49	25. 54
16	36.17E.007	0.0028	12.818.681.436	0.9968	315.96	28.98
17	23.037 .703	0.0018	12.841.719.139	0.9986	307.46	26.66
18	11,704,841	0.0009	12,853.423.940	0.9995	335.67	20.15
19	3.248.746	0.0003	12.656.672.726	0.9996	359.34	25.90
21	901.027	0.0001	12.857 .573 .753	0.9998	360.00	0.00
24	1.979.991	0.0002	12.859.553.744	1.0000	380.00	0.00
J O T L	12.859 .553 .744	1.0000	12.859.553.744	1.0000	231.00	46.95

Table F-3.--Population estimates by age for Pacific cod.
$\left.\begin{array}{ccccccc}\hline \begin{array}{c}\text { Age } \\ \text { class }\end{array} & \text { Number } & \text { Proportion } & \begin{array}{c}\text { Cumulative } \\ \text { number }\end{array} & \begin{array}{c}\text { Cumulative } \\ \text { proportion }\end{array} & \begin{array}{c}\text { Mean } \\ \text { length } \\ \text { (mm) }\end{array} & \begin{array}{c}\text { Standard } \\ \text { deviation } \\ \text { of }\end{array} \\ \hline 0 & \text { length }\end{array}\right]$

$\begin{aligned} & \text { AGE CLASS } \\ & * * * * * * * * * * \end{aligned}$	NUMEER	PRCPORTICN *********	CUMULATIVE NUMBER	cunulative PRCPDRTION 	MEAN LENGIH 	STD. JEV. OF LENGTH
BELCh MINIMUM						
KEY LENETH	4,719,175	0.0062	4,719,175	0.0062	86. 10	B. 51
2	31.0.0.,926	0.0410	35.720,001	0. 0472	141.54	16.91
3	$113.036,351$	0.1454	148,756.353	$0.19 \in 6$	188.35	18.72
4	107.585.317	0.1422	256.341.670	0.3388	230.78	23.95
5	70.922 .094	0.0937	327,263.753	0.4326	24,3.04	25-93
6	54,243.966	0.0717	381.507-720	$0.5 C 43$	270.69	23.16
7	$43,682,934$	0.0577	425.190 .654	0.5620	277.85	29-12
8	52,806.167	0.0698	477.996.221	0.6318	274.C0	29.96
9	$96,096.691$	0.1270	574,093.511	0.7589	275.96	36.51
10	30,683.876	0.0406	604.777.387	3.7994	299.03	43.43
- 11	35.94C.709	0.0475	640,718.095	0.8469	322.63	47.25
12	45.993 .912	0.0608	685.712.008	0.9077	292-24	47-54
-13	32,7C7,828	0.0432	719.419.336	5. 9510	305.77	44.46
14	$14,148.495$	0.0187	733.568.331	0.9697	328.21	33.24
15	12.098 .454	0.0160	745,666.785	0.9557	307.74	41-99
16	3.555 .627	0.0047	749,226,413	0.9904	383.90	25.41
17	2,093.855	0.0028	751.320,268	0.9931	392.87	32.310
-18	4.244 .948	0.0056	755.565.216	0.7987	384.65	41.10
19	469.695	0.0006	756.034.911	0.9994	40C.co	0.00
24	331,028	0.0004	756, 365,938	0.9993	450.00	$0 . \mathrm{CC}$
ABIVE Maxinuy						
KEY LENGIH	155.349	0.0002	756.521.207	1.0000	500.00	0.00
101AL	756.521.287	1.0000	756.521.287	1.0000	255.15	59.43

* ages affecteo ey interfclation

Table F-6.--Population estimates by age for arrowtooth flounder.

- AGES AFFECTED BY INTERPCLATION

Table F-7.--Population estimates by age for Greenland turbot.


```
Table F-8.--Population estimates by age for sablefish.
```

age class	NUAPER	PROPORTION	Cumulative	cumulative PROPORTION	$\begin{array}{r} \text { MEAN } \\ \text { LENGTH } \end{array}$	SID. DEV. OF LENGTH
************	******	********	***********	*********	******	
BELOW MINIMUA						
KEY LENGIH	138.343	0.0070	138.343	0.0070	410.00	0.00
2	138,343	0.0070	276.687	0.0141	430.00	0.00
- 3	15.339.279	0.7796	15,614.965	0.7937	499.31	21.92
4	3.542.700	0.1801	19.157.665	0.9738	523.80	21.26
5	377.437	0.0192	19:535:102	0.9930	540.00	0.00
$10^{1} \mathrm{r}$ A	19.613.445	1.0000	19.673 .445	1.0000	504-09	31.10
end of ageflengih			19.673 .445	. 0000	S04.08	31.10

- ages affected ay interpolation

[^0]: U.S. DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration National Marine Fisheries Service

[^1]: a/ Subarea 3 S was further divided into two subdivisions for analysis because of the higher sampling density around the Pribilof Islands.

[^2]: 1/ Lengths were measured from the anterior tip of the head to the end of the mid-caudal rays; and depending on the shape of the tail, this represented measurements of total length or fork length. The measurements represented total lengths for rattails, yellowfin sole, rock sole, flathead sole, Alaska plaice, longhead dab, starry flounder, and rex sole for fork lengths for other species.

[^3]: a/Rounding accounts for minor discrepancies between sums of subareas and total survey area and between sums of taxonomic subgroups and major groups.

[^4]: a/ Total effort $=1,112.1$ ha.
 b/ Proportion of total CPUE, all fish and invertebrates combined.
 Total CPUE $=186.59 \mathrm{~kg} / \mathrm{ha}$.

[^5]: a / Total effort = 200.9 ha.
 b/ Proportion of total CPUE, all fish and invertebrates combined. Total CPUE $=241.45 \mathrm{~kg} / \mathrm{ha}$.

[^6]: a/ Total effort $=133.2$ ha.
 b/ Proportion of total CPUE, all fish and invertebrates combined. Total CPUE $=129.11 \mathrm{~kg} / \mathrm{ha}$.

[^7]: a/ Total effort $=109.9$ ha.
 b/ Proportion of total CPUE, all fish and invertebrates combined. Total CPUE $=180.65 \mathrm{~kg} / \mathrm{ha}$.

[^8]: a/ Total effort $=192.4$ ha.
 b/ Proportion of total CPUE, all fish and invertebrates combined. Total CPUE $=197.43 \mathrm{~kg} / \mathrm{ha}$.

[^9]: a/ Total effort $=33.3$ ha.
 b/ Proportion of total CPUE, all fish and invertebrates combined. Total CPUE $=108.98 \mathrm{~kg} / \mathrm{ha}$.

[^10]: a/ CPUE = catch per unit effort
 b/ Minor discrepancies between sums over subareas and totals due to rounding.

